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Abstract

During the period of 12/1/2004 - 5/31/2005, we have proposed different approaches on

energy efficient wireless sensor networks.

1. We proposed an event forecasting methodology for wireless sensor networks using interval

type-2 fuzzy logic system, which consists of sensed signal strength forecasting and event de-

tection. We also studied the fundamental performance analysis of different event detection

schemes.

2. We studied spectrum efficient coding scheme for correlated non-binary sources because

there exists bandwidth constraint in wireless sensor networks.

3. We proposed to reduce the redundancy in wireless sensor networks using SVD-QR method.

4. A hybrid approach for Asynchronous Energy-Efficient MAC (ASCEMAC) Protocol was

proposed for wireless sensor networks.

5. We studied energy-efficient query in sensor database systems with uncertainties.

6. We proposed a fuzzy sensor deployment scheme, and studied clustering in sensor networks

with fuzzy cluster radius.

7. We proposed a cross-layer (physical layer, data-link layer and application layer) design

scheme for mobile ad hoc networks.

Eleven papers were produced during the past six months, and are attached to this report.
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1 Event Forecasting for Wireless Sensor Networks Using Interval

Type-2 Fuzzy Logic System

Wireless sensor networks (WSN) are often used to perform event detection, tracking, and classifi-

cation. Therefore, compared to ad-hoc networks, WSN should be event-centric. In [1], we proposed

an event forecasting scheme for wireless sensor networks using interval type-2 fuzzy logic system.

Our event forecasting scheme consists of two steps: sensed signal strength forecasting and event

detection. We demonstrated that real-world sensed acoustic signals are self-similar, which means

they are forecastable. We showed that a type-2 fuzzy memebership function (MF), i.e., a Gaussian

MF with uncertain mean is appropriate to model the sensed signal strength of wireless sensors.

Two fuzzy logic systems (FLS), a type-1 FLS and an interval type-2 FLS were designed for signal

strength forecasting. Furthermore, we proposed a double sliding window scheme for event detection

based on the forecasted signals. Simulation results show that the interval type-2 FLS outperforms

the type-1 FLS in signal strength forcating and the performance of event detection based on the

forecasted signal from type-2 FLS is much better than that based on type-1 FLS.

2 Event Detection Algorithm and Fundamental Performance Anal-

ysis in Wireless Sensor Networks

In [3], we presented two methods to do event detection, one is Double Sliding Window Detection,

the other one is Fuzzy Logic approach. The accuracy of the results is established via sensor

network testbed and simulations. In [5][6], we presented a fundamental performance analysis of

event detection in wireless sensor networks. We compared double sliding window theoretically

against the fixed threshold approach. In [5], Rayleigh and Rician distributions are validated for

the sensed signals and used in the performance analysis; and in [6], Gaussian distribution with

uniformly distributed mean values are assumed for the analysis. Measures of performance for these

tasks are well defined, including detection of false alarms or misses, classification errors, and track

quality.

3 Spectrum Efficient Coding Scheme for Correlated Non-Binary

Sources in Wireless Sensor Networks

Energy-aware technique to reduce energy consumption in distributed sensor networks has become a

prominent topic in sensor network research. Various sensor network applications have taken energy

efficiency into consideration. In the case of correlated binary sources, distributed source coding has

been literally studied in information theory. However, data sources from real sensor networks are

normally non-binary. In [4], we proposed a spectrum efficient coding scheme for correlated non-
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binary sources in sensor networks. Our approach constructs the codeword cosets for the interested

source, taking advantage of statistical characters of the distinct observations from sensor nodes.

The coset leaders are then transmitted via the channel and decoding is performed with the available

side information. Simulations were carried out over independent and identically distributed (i.i.d)

Gaussian sources and data collected from Xbow wireless sensor network test bed. Simulation results

show that the proposed scheme performs at 0.5 - 1.5 dB from the Wyner-Ziv distortion bound.

4 Redundancy Reduction in Wireless Sensor Networks Using SVD-

QR

In densely deployed wireless sensor networks, not only does the data of one sensor node have self-

similarity, but the data from adjacent sensor nodes also have cross-similarity. Therefore, it is clear

that there exists highly redundancy in the collected data from sensor nodes in the neighborhood.

Due to the intrinsic properties wireless sensor networks have, e.g., energy constraint, bandwidth

limitation, this kind of information redundancy will impact the whole networks in a negative way.

In [2], we proposed to use Singular-Value-QR Decomposition (SVD-QR) to reduce the redundancy

in wireless sensor networks.

5 A Hybrid Approach for Asynchronous Energy-Efficient MAC

(ASCEMAC) Protocol for Wireless Sensor Networks

In [7], a novel asynchronous energy-efficient MAC protocol, ASCEMAC, was proposed for wireless

sensor networks. We combined both contention-based and schedule-based MAC protocols' energy

saving strategies in our algorithm. In ASCEMAC, by applying free-running method and fuzzy

logic rescheduling scheme, time synchronization which is necessary in existing energy-efficient MAC
protocols is not required any more. Moreover, we presented a traffic-intensity and network-density-

based model to determine essential algorithm parameters, such as power on/off duration, interval of

schedule broadcast and super-time-slot size and order. Simulation results showed that our algorithm

ensures the average successful transmission rate, decreases the data packet average waiting time,

and reduces the average energy consumption. Therefore, network performance is improved and

network lifetime is extended by using our algorithm.

6 Energy-Efficient Query in Sensor Database Systems with Un-

certainties

Query processing methods have been studied extensively in the context of database systems. But
they are not directly applicable in sensor database systems due to the characteristics of sensor net-
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works: the decentralized nature of sensor networks, the limited computational power and energy

scarcity of individual sensor node, and imperfect information recorded. In [8], we proposed an

energy-efficient query optimization algorithm (QOA) for imperfect information in sensor database

systems. We employed an in-network query processing method, which tasks sensor networks

through declarative queries. Given a query, our QOA generates an energy efficient query plan

for in-network query processing. Moreover, our algorithm can explicitly exposes uncertainty and

ambiguity of query results to database users. As we know, it is troublesome or even impossible to

keep a large number of data in sensor database systems for network resource constraints. In our

algorithm, we formulated the probability distribution functions (PDFs) of measurement uncertain-

ties according to the knowledge on observation coverage and devices utilized, instead of estimating

them from prior data. The simulation results demonstrated that our algorithm can vastly reduce

resource usage and thus extend the lifetime of sensor database system.

7 Fuzzy Deployment for Wireless Sensor Networks

In [9], we developped a fuzzy deployment for wireless sensor networks. Traditional deployments

often assume a homogeneous environment, which ignores the effect of terrain profile and obstacles

such as buildings, trees and so on. Nevertheless, in many applications, some areas need to be more

critically monitored. All these factors are combined together through Fuzzy Logic System in our

proposed scheme. Simulation results show that the Fuzzy Deployment improves the worst-case

coverage by around 5 dB.

8 Clustering in Sensor Networks with Fuzzy Cluster Radius

Previous research shows that restraining cluster size helps energy efficiency in sensor networks.

However, it is often ignored that the distance estimation in sensor networks is inaccurate enough

for fine-grained clustering decision. In [10], we were concerned with developing a fuzzy cluster size to
handle the distance error and non-linearity. A fuzzy logic system was developed to make clustering

decision based on the received signal strength. Simulation results showed that the proposed Fuzzy

Cluster Size scheme can keep the performance near the optimal range when distance estimation is

distorted by log-normal shadowing.

9 Bottom-up Cross-Layer Optimization for Mobile Ad Hoc Net-

works

In [11], we introduced a cross-layer design method for mobile ad hoc networks. We use fuzzy

logic system (FLS) to coordinate physical layer, data-link layer and application layer for cross-

layer design. Ground speed, average delay and packets successful transmission ratio are selected
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as antecedents for the FLS. The output of FLS provides adjusting factors for the AMC (Adaptive

Modulation and Coding), transmission power, retransmission times and rate control decision. Simu-

lation results show that our cross-layer design can reduce the average delay, increase the throughput

and extend the network lifetime. The network performance parameters could also keep stable after

the cross-layer optimization.
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Abstract

Wireless sensor networks (WSN) are often used to perform event detection, tracking,

and classification. Therefore, compared to ad-hoc networks, WSN should be event-centric.

In this paper, we propose an event forecasting scheme for wireless sensor networks using

interval type-2 fuzzy logic system. Our event forecasting scheme consists of two steps:

sensed signal strength forecasting and event detection. We demonstrate that real-world

sensed acoustic signals are self-similar, which means they are forecastable. We showed that

a type-2 fuzzy memebership function (MF), i.e., a Gaussian MF with uncertain mean is

appropriate to model the sensed signal strength of wireless sensors. Two fuzzy logic systems

(FLS), a type-1 FLS and an interval type-2 FLS are designed for signal strength forecasting.

Furthermore, we propose a double sliding window scheme for event detection based on the

forecasted signals. Simulation results show that the interval type-2 FLS outperforms the

type-1 FLS in signal strength forcating and the performance of event detection based on

the forecasted signal from type-2 FLS is much better than that based on type-1 FLS.

Index Terms : Wireless sensor networks, fuzzy logic systems, interval type-2 membership

function, self-similarity, forecasting, event detection.



1 Introduction

Wireless sensor networking is an emerging technology that promises unprecedented ability

to monitor and manipulate the physical world via a network of densely distributed wireless

sensor nodes. The nodes can sense the physical environment in a variety of modalities, in-

cluding acoustic, seismic, thermal, and infrared. They are networked together in an ad hoc

fashion, which involves peer-to-peer communication in a network with a dynamically changing

topology. Wireless sensor networks do not rely on a preexisting fixed infrastructure, such as

a wireline backbone network or a base station. They are self-organizing entities that are de-

ployed on demand in support of various events such as security and surveillance, monitoring of

wildlife habitats, smart sensor-instrumented environments, and condition-based maintenance

of complex systems, etc.

Sensor nodes are typically powered by small batteries that are hard to replace or recharge.

Hence, energy constraint is a unique character of WSN compared with traditional wireless ad-

hoc networks. Energy comsuption occurs in three domains: sensing, data processing (including

AD/DA and digital signal processing), and communications[8]. According to [1], the sensor,

signal processing parts operate at low frequency and consume less than 1mW. This is over an

order of magnitude less than the energy consumption of the communication part. Therefore,

we prefer less communication/data exchange between sensor nodes but more local processing

implemented by one single sensor node so as to increase the lifetime of the WSN.

The main goal of WSN is to monitor physical world. Usually, people are more intereted

in unexpected events. For example, in a scenario of battlefield, people are more interested

in the appearance of enemies. If a WSN is to monitor forest-fire, unusual increasing of the

temperature should be a necessary warning to people. Both the appearance of enemies and the

unusual increasing of the temperature can be seen as events. Because of the energy constraint

of WSN mentioned previously, the ideal state of WSN should be event-driven, so that we can
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power off the communication part at most of the time. Only when certain sensor nodes detect

an event, they trigger the RF channel, and transmit the useful information to clusterhead or

gateway. This power on/off management will be easier if each wireless sensor could forecast

its future sensed signal strength and make event detection.

In this paper, we propose an event forecasting scheme for wireless sensor networks using

interval type-2 fuzzy logic system. Our event forecasting scheme consists of two steps: sensed

signal strength forecasting and event detection. We use Xbow wireless sensor network profes-

sional develper's kit MOTE-Kit[7] as our testbed to get data sets from different scenarios. First

of all, we show that the sensed signal strength is self-similar and long-range dependent using

variance-time plotting , a common statistical method which has been widely used to verify

self-similarity of time-series. Since the sensed signal strength is self-similar, its characteristics

can be captured. We apply a type-1 FLS and an interval type-2 FLS to sensed signal strength

forecasting. Furthermore, we make event detection based on the forecasted signal.

The remainder of the paper is organized as follows. Section 2 studies the self-similarity of

sensed signal strength. Section 3 gives an overview of type-2 fuzzy sets and interval type-2

FLSs. In Section 4, we demonstrate that sensed signal strength in WSN should be modeled

as a type-2 MF, a Gaussian MF with uncertain mean. Hence, we apply this knowledge and

design an interval type-2 FLS to forecast the sensed signal strength in WSN. A singleton type-

1 FLS is also designed for performance comparison. In Section 5, we propose double sliding

window scheme to make event detection based on the forecasted signal. Simulation results and

discussions are presented in section 6. Section 7 concludes this paper.

2 Self-Similarity of Sensed Signal Strength in WSN

For a detailed discussion on self-similarity in time-series, see [17] [16]. Here we briefly present

its definition [2]. Given a zero-mean, stationary time-series X = (Xt; t = 1, 2, 3,...), we define
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the m-aggregated series X(m) - (X(m). k - 1 2, 3,.) by summing the original series X over

nonoverlapping blocks of size m. Then it's said that X is H-self-similar, if, for all positive m,

X(m) has the same distribution as X rescaled by mH. That is,

tm
XtmH Z Xi VmEN. (1)

i=(t-1)m+1

If X is H-self-similar, it has the same autocorrelation function r(k) = E[(Xt -P)(Xt+k -4)]/0 2

as the series X(m) for all m, which means that the series is distributionally self-similar: the

distribution of the aggregated series is the same as that of the original.

Self-similar processes can show long-range dependence. A process with long-range depen-

dence has an autocorrelation function r(k) - k-3 as k -* co, where 0 < /3 < 1. The degree

of self-similarity can be expressed using Hurst parameter H = 1 - /3/2. For self-similar series

with long-range dependence, 1/2 < H < 1. As H --- 1, the degree of both self-similarity and

long-range depence increases.

One method that has been widely used to verify self-similarity is the variance-time plot,

which relies on the slowly decaying variance of a self-similar series. The variance of X(m) is

plotted against m on a log-log plot, and a straight line with slope (-03) greater than -1 is

indicative of self-similarity, and the parameter H is given by H -1 -/3/2. We use this method

to verify the self-similarity of acoustic signal.

In our experiments, 8 sensors were deployed in a lab. The location of each sensor is plotted

in Fig. 1. We designed two scenarios, one is with a fixed source, and the other is without a

fixed source. In Fig. 2, we plot the variance of X(m) against m on a log-log plot for 8 sensor

node data respectively in the first scenario and Fig. 3 is under the second scenario. From the

two figures, it's very clear that the no matter under what kind of condition the sensor network

data have self-similarity because their traces have slopes much greater than -1.
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3 Introduction of Type-2 Fuzzy Set and Interval Type-2 Fuzzy

Logic Systems

3.1 Introduction to Type-2 Fuzzy Set

The concept of type-2 fuzzy sets was introduced by Zadeh [18] as an extension of the concept of

an ordinary fuzzy set, i.e., a type-1 fuzzy set. Type-2 fuzzy sets have grades of membership that

are themselves fuzzy [3]. A type-2 membership grade can be any subset in [0, 1] - the primary

membership; and, corresponding to each primary membership, there is a secondary membership

(which can also be in [0, 1]) that defines the possibilities for the primary membership. A type-1

fuzzy set is a special case of a type-2 fuzzy set; its secondary membership function is a subset

with only one element, unity. Type-2 fuzzy sets allow us to handle linguistic uncertainties, as

typified by the adage "words can mean different things to different people." A fuzzy relation of

higher type (e.g., type-2) has been regarded as one way to increase the fuzziness of a relation,

and, according to Hisdal, "increased fuzziness in a description means increased ability to handle

inexact information in a logically correct manner [5]".

Figure 4 shows an example of a type-2 set. The domain of the membership grade corre-

sponding to x = 4 is also shown. The membership grade for every point is a Gaussian type-1

set contained in [0, 1], we call such a set a "Gaussian type-2 set". When the membership grade

for every point is a crisp set, the domain of which is an interval contained in [0, 1], we call such

type-2 sets "interval type-2 sets" and their membership grades "interval type-1 sets". Interval

type-2 sets are very useful when we have no other knowledge about secondary memberships.

An interval type-2 MF is characterized by an upper and lower MF [10]. An upper MF and a

lower MF are two type-1 MFs which are bounds for the footprint of uncertainty of an inter-

val type-2 MF. The upper MF is a subset which has the maximum membership grade of the

footprint of uncertainty; and, the lower MF is a subset which has the minimum membership

grade of the footprint of uncertainty.
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Example 1: Gaussian Primary MF with Uncertain Mean

Consider the case of a Gaussian primary MF having a fixed standard deviation, ok, and an

uncertain mean that takes on values in [mk, km2], i.e.,

IUt(xk) = exp [_(Xk k)2] , m I e [m5Cl,mC2] (2)

k

where: k = 1,... ,p; p is the number of antecedents; 1 = 1,... ,M; and, M is the number of

rules. The upper MF, 74(xk), is (see Fig. 5)

•Ar(ml l, ol ; Xk), Xk < Mllk

"-k(Xk) 1, m kl < Xk <_ M k2 (3)

kk2 ,1k; xk), Xk > Mk2

where, for example, .'/(m 1l,o0;Xk) exp I ).

The lower MF, [pl(xk), is (see Fig. 5)

=x {-xk < mkl+mk2
,Xk -VM2 r;X) X 2 (4)

.Af(Mlkl,ok; Xk), Xk > M ~2

D

3.2 Introduction to Type-2 FLS

Figure 6 shows the structure of a type-2 FLS[14]. It is very similar to the structure of a

type-1 FLS [11]. For a type-1 FLS, the output processing block only contains the defuzzifier.

We assume that the reader is familiar with type-1 FLSs, so that here we focus only on the

similarities and differences between the two FLSs.

The fuzzifier maps the crisp input into a fuzzy set. This fuzzy set can, in general, be a

type-2 set.

In the type-1 case, we generally have "IF-THEN" rules, where the lth rule has the form

"R1 : IF x, is F1 and X2 is F1 and... and x is F1, THEN y is G"', where: xis are inputs; F~s
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are antecedent sets (i = 1,... ,p); y is the output; and G1s are consequent sets. The distinction

between type-1 and type-2 is associated with the nature of the membership functions, which is

not important while forming rules; hence, the structure of the rules remains exactly the same

in the type-2 case, the only difference being that now some or all of the sets involved are of
-l -1

type-2; so, the /th rule in a type-2 FLS has the form "R1 : IF x, is F1 and x2 is F2 and ...
-'1 2and x isFp, THEN y is G".

In the type-2 case, the inference process is very similar to that in type-1. The inference

engine combines rules and gives a mapping from input type-2 fuzzy sets to output type-2

fuzzy sets. To do this, one needs to find unions and intersections of type-2 sets, as well as

compositions of type-2 relations.

In a type-1 FLS, the defuzzifier produces a crisp output from the fuzzy set that is the

output of the inference engine, i.e., a type-0 (crisp) output is obtained from a type-1 set. In

the type-2 case, the output of the inference engine is a type-2 set; so, "extended versions" (using

Zadeh's Extension Principle [18]) of type-1 defuzzification methods were proposed in[i4]. The

type-reduction gives a type-1 fuzzy set called "type-reduction set".

To obtain a crisp output from a type-2 FLS, we can defuzzify the type-reduced set. The

most natural way of doing this seems to be by finding the centroid of the type-reduced set;

however, there exist other possibilities like choosing the highest membership point in the type-

reduced set.

General type-2 FLSs are computationally intensive, because type-reduction is very inten-

sive. Things simplify a lot when secondary membership functions (MFs) are interval sets (in

this case, the secondary memberships are either 0 or 1). When the secondary MFs are interval

sets, the type-2 FLSs are called "interval type-2 FLSs". In [10], Liang and Mendel proposed the

theory and design of interval type-2 FLSs. They proposed an efficient and simplified method

to compute the input and antecedent operations for interval type-2 FLSs, one that is based on

a general inference formula for them.
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In an interval type-2 nonsingleton FLS with type-2 fuzzification and meet under minimum

or product t-norm, the result of the input and antecedent operations, F', is an interval type-1

set, i.e., F1 = [f_1, f1], where f 1 and f1 simplify to

_f = -Pj (xj)*..* _,•j (Xp) (5)
P

and

f j• •l (Xl) * -•lp (Xp) (6)

where xi (i = 1, ... , p) denotes the location of the singleton. In this paper, we use center-of-sets

type-reduction [10], which can be expressed as:

ZMf
Yc0s,(Yl"" 1)..IyM'F'"" I FM) = [Yl' Yr] = y '•M y '• 1/E lfiiiM=lfi (7)

where Y 0o, is an interval set determined by two end points, yj and yr; fi E F =[f

y i E Y = [y', y'], and Y' is the centroid of the type-2 interval consequent set Gi, and,

i = 1, ... , M. We also use the training method proposed in [10] for designing an interval

type-2 FLS in which its parameters are tuned

4 Sensed Singal Strength Forecasting Using Interval Type-2

FLS

Acoustic amplitude sensor node measures sound amplitude at its microphone. Assuming that

the sound source is a point source and sound propagation is lossless and isotropic, a root-

mean-squared (RMS) amplitude measurement z is related to the sound source position X

as
a

Z a + w, (8)

where a is the RMS amplitude of the sound source, ' is the location of the sensor, and w is

RMS measurement noise [9]. According to [9], w is modelled as a Gaussian with zero mean
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and variance a 2. The sound source amplitude a is also modelled as a random quantity, which

is uniformly distributed in the interval [a,,, ahi]. Given the location of the sound source X and

the sensor position a, - is uniformly distributed as a is. Therefore, z should be modelled

as a Gaussian primary MF having a fixed standard deviation and an uncertain mean, as shown

in Fig 5.

FLSs have been extensively used in time-series forecasting (e.g., [12], [10]). Since the sensed

signal strength in WSN is self-similar as demonstrated in Section 2, its characteristics can be

captured, which also means it can be forecasted. Here we apply an interval Type-2 FLS to

do a multi-step forecasting, the step size is L. We use four antecedents, i.e., x(k - 4 x L),

x(k - 3 x L), x(k - 2 x L), and x(k - 1 x L), as inputs of the FLS to predict x(k). Similarly,

we use x(k-4 xL+i), x(k-3 x L+i), x(k-2 x L+i), and x(k-1 x L+i) to predict

x(k + i), Vi < L. If antecedent has two fuzzy sets, the number of rules is 24 = 16. The rules

are set up as one example shown bellow:

R1: IFx(k-4x L) isP and x(k-3xL) isF 2 and x(k-2 x L) isF 1 andx(k -lx L) is

F2 , THEN x(k) is

We use center-of-sets type reduction and steepest descent training algorithm [10] to design this

interval type-2 FLS.

For comparison, we also design a type-1 FLS for signal strength forecasting. Antecedents

are the same as in the interval type-2 FLS, however Gaussian MFs are chosen for this type-1

FLS. There are also 16 rules, since each of the antecedents has 2 fuzzy sub-set as well. The

rule is designed as:

R' : IF x(k - 4 x L) is F1 and x(k - 3 x L) is F1 and x(k - 2 x L) is F1 and x(k - 1 x L) is

F', THEN x(k) is GC.

We use center-of-sets defuzzifier and steepest descent training algorithm to design this type-1

FLS.

9



Our event forecasting scheme consists of two steps: sensed signal strength forecasting and

event detection. In this paper, we propose a new event detection algorithm, double sliding

window event detection.

5 Double Sliding Window Event-Detection

In [15], the acoustic energy in a fixed period of time is integrated, when it exceeds a threshold,

an event is claimed occurring, as:

M-1E- = Z IZným_2 , (9)

M=0

Es >_ Ethreshold. (10)

However, this simple method suffers from a significant drawback; namely, the value of the

threshold depends on the sensed signal energy. When there is no event occuring in the sensing

range, the sensed signal consists of only noise. The level of the noise power is generally

unknown and can change when the environment changes or if unwanted interferers go on and

off. Therefore, it is quite difficult to set a fixed threshold. We propose a double sliding window

algorithm for event-detection so as to alleviate the threshold value selection problem.

The double sliding window event-detection algorithm calculates two consecutive sliding

windows of the sensed signal energy. The basic principle is to form the decision variable as

the ratio of the total energy contained inside the two windows. Figure 7 shows the windows

A and B and the response of the ratio m, to the start and end of a sensed event. It can be

seen that when only noise is sensed the response is fiat, since both windows contain ideally the

same amount of noise energy.

The calculation of the window A and window B value is represented as

M-1

E. = E Izn-ml2 , (11)
m=0O

10



M-1

Eb E I IZ+1 2. (12)
1=0

Then the decision variable mn is

Ea (13)

-Eb

When mn exceeds the threshold Thl, an event is claimed occurring(see Fig. 7.(a)). The

advantages of this approach are: 1st, the decision variable mn does not depend on the sensed

signal energy, but on the ratio of the energy of two consecutive windows; 2nd, we can predict

not only the starting edge of the event, but also the ending edge, i.e. , when Mn below the

threshold Th2, the event is claim ending(see Fig. 7.(b)).

6 Simulations

Our simulations were based on N = 480 samples, x(1), x(2), ... , x(480). The first 240 data,

x(1), x(2), ... , x(240), are for training, and the remaining 240 data, x(241), x(242),..., x(480)

are for testing. In Fig. 8, we plot the sensed data that we used for training and testing, x(1),

x(2), ... , x(480). A standard 1kHz audio signal with different volume levels was used to

simulate the events. Each sample has 1024ms duration.

We applied a type-1 FLS and an interval type-2 FLS for sensed signal forecasting. The

initial locations of antecedent MFs were based on the mean, mt, and std, ot, of the training

data set. The parameters and number of parameters in the type-1 FLS and interval type-2

FLS are summarized in Table 1. The initial values we choose for the Guassian MFs are listed

in Table 2. Then, we use steepest descent algorithm to train all the parameters based on the

training data. After training, all the parameters and rules are fixed and we test the interval

type-2 FLS based on the remaining 240 samples, x(241), x(242), ... , x(480). We set the step

size as L = 5 in both the type-1 FLS and the interval type-2 FLS. Meanwhile, the window size

M equals to 5 in double sliding window event-detection as well. That makes the sensed signal

forecating meaningful.

11



We compared the performance of the interval type-2 FLS with that of the type-I FLS

for sensed signal strength forecasting. For each FLS, we ran 100 Monte-Carlo realizations to

eliminate the randomness of the consequences, and the two FLSs were tuned using a simple

steepest-descent algorithm for 5 epochs. We used the testing data to see how each FLS per-

formed by evaluating the root-mean-square-error (RMSE) between the defuzzified output of

the FLS and the actual sensor data (x(k + 1)), i.e.,

480

RMSE 24 E [x(k) - f(xk)]2, (14)
k=241

where xk = [x(k- 4 x 5), x(k- 3 x 5), x(k- 2 x 5), x(k- 1 x 5 )]T, and T denotes transpose. The

RMSE of all simulations are summarized in Figure 9. Observe Figure 9, the interval type-2

FLS outperforms the type-1 FLS in the sensed signal strength forecasting.

We are more interested in the system's capability of forecasting the events, especially the

starting point of the events. We used the forecasted data sets to detect the starting point

of the events, i.e., the time stamp of event occurrence and then compared with the actual

time stamp. We evaluated our double sliding window algorithm and compared it against the

cumulated signal strength scheme[15]. We chose Thl = mean + std for the double sliding

window event detection. Since the threshold is hard to choose for cumulated signal strength

scheme, we ran simulation for 3 different thresholds: i.e., mean, mean + std/2 and mean + std.

We also ran 100 Monte-Carlo simulations so as to get the average absolute error between the

forecasted and actual time stamp, 1 EZ10 IDi -Pil, where Di is the detected starting point

(based on the forecasted signal) and Pi is the actual starting point. The results are summarized

in Table 3.

Observe Table 3, the performance of event detection based on the forecasted signal from

type-2 FLS is much better than that based on the forecasted signal from type-1 FLS. Mean-

while, our double sliding window is more effective than the existing cumulated signal strength

scheme. Event forecasting helps us for power on/off management of the WSN, i.e. , we can

12



power on the communication part of sensor nodes only when event has been forecasted. Since

the sensor, signal processing parts consume less than 1/10 of the energy consumed by the

communication part[l], this power on/off strategy can save the energy tremendously.

7 Conclusions

In this paper, we proposed an event forecasting scheme for wireless sensor networks using in-

terval type-2 fuzzy logic system. Our event forecasting scheme consists of two steps: sensed

signal strength forecasting and event detection. We demonstrated that real-world sensed acous-

tic signals are self-similar, which means they are forecastable. We showed that a type-2 fuzzy

memebership function (MF), i.e., a Gaussian MF with uncertain mean is appropriate to model

the sensed signal strength of wireless sensors. We then applied an interval type-2 FLS to per-

form sensed signal forecasting. Furthermore, we proposed a double sliding window for event

detection based on the forecasted signal, and compared it against the existing cumulated signal

strength scheme. Simulation results show that FLSs can be used for sensed signal strength

forecasting, and the interval type-2 FLS performs much better than the type-1 FLS in sensed

signal forecasting. The sensed signal forecasting can further be used for event detection, and

the average absolute error between the actual starting point and the point detected based on

the sensed signal from the interval type-2 FLS is much smaller than the one based on the

sensed signal from the type-2 FLS.
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Table 1: The parameters and number of parameters in type-i and interval type-2 FLSs.

FLS type-i interval type-2
Parameters in one antecedent mFi, UF? m-,', m-,I, ap•

Parameters in one consequent _ y1, y•
Total number of Parameters 144 224

Table 2: Initial values of the parameters in type-1 and interval type-2 FLSs. Each antecedent
is described by two fuzzy sets.

Type-1 FLS Interval Type-2 FLS
mean mt - 2 at [mt - 2 .5 at, mt - 1.5at]

or mt + 2 at or [mt + i.5at, mt + 2.5Ut]

a UF= 2at Ui = 2at
___ __k_ k

consequent E e [min, max] y - at,

Table 3: Average absolute error between the forecasted and actual time stamp of the starting
edge of events in type-1 FLS and interval type-2 FLS. Here, 1 stands for one sample or 1024ms,
m and a stands for the mean and the standard deviation of the cumulated signal strength of
the training data respectively.

type-1 FLS interval type-2 FLS

double sliding window 7.8 1.4
SS with th = m 57.8 18.7

SS with th = m + a/2 24.4 13.0
SS with th = m + a 20.5 16.6
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Abstract-In densely deployed wireless sensor networks, In this paper, we use Xbow wireless sensor network pro-
not only does the data of one sensor node have self-similarity, fessional developer's kit MOTE-Kit[5] as our testbed to get
but the data from adjacent sensor nodes also have cross- data sets from different scenarios. In the following sections,
similarity. Therefore, it is clear that there exists highly
redundancy in the collected data from sensor nodes in the Section II studied the self-similarity of sensed data; the
neighborhood. Due to the intrinsic properties wireless sensor redundancy reduction for wireless sensor networks using
networks have, e.g., energy constraint, bandwidth limitation, SVD-QR is presented in Section III; and conclusions and
this kind of information redundancy will impact the whole future works are provided in Section IV.
networks in a negative way. In this paper, we propose to use
Singular-Value-QR Decomposition (SVD-QR) to reduce the
redundancy in wireless sensor networks. H. SELF-SIMILARITY OF SENSOR NETWORK DATA

I. INTRODUCTION For a detailed discussion on self-similarity in time-

Wireless sensor networking is an emerging technol- series, see [8] [7]. Here we briefly present its defini-
ogy that promises unprecedented ability to monitor and tion [4].Given a zero-mean, stationary time-series X =

manipulate the physical world via a network of densely (Xt; t = 1, 2, 3,.. .), we define the m-aggregated series

distributed wireless sensor nodes. The nodes can sense the X(m) - (X(m); k = 1, 2, 3,...) by summing the original
physical environment in a variety of modalities, including series X over nonoverlapping blocks of size m. Then it's
acoustic, seismic, thermal, and infrared. They are net- said that X is H-self-similar, if, for all positive m, X(m)

worked together in an ad hoe fashion, which involves peer- has the same distribution as X rescaled by mH. That is,
to-peer communication in a network with a dynamically tM
changing topology. Wireless sensor networks do not rely on Xt = m_ E Xi VmEN (1)
a preexisting fixed infrastructure, such as a wireline back- i=(t-I)m+1
bone network or a base station. They are self-organizing
entities that are deployed on demand in support of various If X is H-self-similar, it has the same autocorrelation func-
events such as security and surveillance, monitoring of tion r(k)= E[(Xt - U)(Xt+k -tt)]/U 2 as the series X(m)
wildlife habitats, smart sensor-instrumented environments, for all m, which means that the series is distributionally
and condition-based maintenance of complex systems, etc. self-similar: the distribution of the aggregated series is the

Sensor nodes are typically powered by small batteries same as that of the original.
that are hard to replace or recharge. Hence, how to Self-similar processes can show long-range dependence.
efficiently use the sensor nodes, e.g. , not lose essential A process with long-range dependence has an autocorre-
information but extend the lifetime of the nodes as long as lation function r(k) - k-0 as k -- co, where 0 </3 < 1.
possible, is an important issue. The degree of self-similarity can be expressed using Hurst

Usually, in wireless sensor networks, sensor nodes are parameter H = 1 - /3/2. For self-similar series with long-
densely deployed, e.g., tens of sensor nodes per square range dependence, 1/2 < H < 1. As H --+ 1, the degree of
meters [6], therefore the information data collected from both self-similarity and long-range dependence increases.
adjacent sensor nodes might be very similar with each One method that has been widely used to verify self-
other, that also means there exists redundancy among similarity is the variance-time plot, which relies on the
those information. Taking advantage of this property, we slowly decaying variance of a self-similar series. The
propose to reduce the redundancy so as to prolong the variance of X(m) is plotted against m on a log-log plot,
lifetime of the whole networks by using Singular-Value- and a straight line with slope (-/3) greater than -1 is
QR Decomposition (SVD-QR). indicative of self-similarity, and the parameter H is given



by H = 1 - f8/2. We use this method to verify the self-
similarity of acoustic signal.' 98000

In our experiments, 8 sensors were deployed in a lab. *? ?000 00• 00000oo

The location of the sensors is showed in Fig. 1. We -. - ? 00

designed two scenarios, one is with a fixed source, and \" 0
the other is without. In Fig. 2, we plot the variance of -1.5
X(m) against m on a log-log plot for 8 sensor nodes ,N
respectively in the first scenario and Fig. 3 is under the -2 0------

second scenario. In order to prove that the data from r 2 "1
all the sensor nodes have self-similarity as well, we -25 n

mixed the data sets together to get a new time series as r 6

Y (Xt,X2, ,Xt; t = 1,2,3,...). We test its self- -3 0n"

similarity by plotting the variance-time curve in Fig 4 as
well. From these three figures, it's very clear that the no " l..52

0:5 1! 2 25 3 3.5

matter under what kind of condition both the single sensor
network data and the mixed sensor networks data have self- Fig. 2. The variance-time plot for sensed signal strength with fixed

similarity because their traces have slopes much greater source as background during 3 hours. The sampling period is 1024ms.

than - 1.

Snode4
nodel node2 O -0.5 'N

node3 -1

-1., \

node5 0

-2

-2.5 .oe4

nde 6
node6 node7

node7 
Source

0 node8 -3.

0 0!. 1 1.5 2 2.5 3 3.5

Fig. 3. The variance-time plot for sensed signal strength without fixed
Fig. 1. The deployment of the eight sensor nodes in our experiments. source during 3 hours. The sampling period is 1024ms.

III. REDUNDANCY REDUCTION IN WIRELESS SENSOR enough information from less sensor nodes, we can tum
NETWORKS USING SVD-QR off the other sensor nodes so as to preserve energy and

In the previous section, we have proved that the data prolong the lifetime of the whole networks.
sets collected by adjacent sensor nodes are quite similar How to select the principal nodes to effectively represent
with each other. It is clear that there exists redundancy the whole neighborhood? We view the data from all the
among the collected information. Therefore, two questions adjacent sensor nodes as a matrix P, each column of P is
are popping up. Is such kind of redundancy profitable? the data from one sensor node, each row of P is the data
Does more copies of the data set mean better estimates? collected at one epoch from all the sensor nodes. Therefore,
The answers are both no. The goal of wireless sensor the principal nodes picking problem can be simplified as
networks is to monitor the physical world, provide enough subset selection.
information in which users are interested so that users can Several subset selection methods exist [1], but a singular
perform further tasks, e.g., events detection, targets esti- value decomposition (SVD) method is preferable in rank
mating and tracking. Blair and Bar-Shalom have already deficient problems [2]. Furthermore, the SVD provides
demonstrated in [9] that more data from more sensor nodes a natural way to separate a space into dominant and
doesn't mean better performance in terms of the maximum subdominant subspaces. If we view the data matrix P as
root-mean square errors(RMSE). Meanwhile, if we can get a span of the input subspace, then the SVD decomposes



.... .correspond to the ? ordered most-significant singular
-0. OO ° values.

- 0 In short, we select the data sets as the following:

-1 '..9 • Decomposes P, from the SVD of P, save V.
. Observe E. Select an appropriate ?.

-1.5 .Partition

-2 V21 1z2 (4)

-2.5 where V11 E R×, V12 E Rfx(M-f), V21 E

"\"N R(M-f)X, and V22 E R(M-f)x(M-f). In many
2.practical cases, al is much larger than a,,; thus r

can be chosen much smaller than the estimate r' of

0 , 1,5 225 rank(P), even 1.
Using QR decomposition with column pivoting, de-

Fig. 4. The variance-time plot for mixed sensor data during 3 hours. termine H such that
The sampling period is 1024ms. QT[vT, vT]II= [RllR 1 2 ], (5)

the span into an equivalent orthogonal span, from which where Q is a unitary matrix, and R11 and R 12 form

we can identify the dominant and subdominant spans. In an upper triangular matrix; and H is the permutation

this way, we solve two problems simultaneously: (i) we matrix, the column permutation IH is chosen so that

estimate the data sets from how many sensor nodes are abs(diag(R)) is decreasing. In short, I corresponds

needed to effectively represent the neighborhood, and, (ii) to the P ordered most-significant sets.

we identify the data sets from which sensor nodes are the B. An example of the SVD-QR decomposition in Redun-
principal ones. The remainder can be discarded, and those dancy Reduction
sensor nodes can be turned off to conserve the energy. Here, we give an example of how to use SVD-QR

A. Introduction of SVD-QR Algorithm decomposition to reduce the redundancy in wireless sensor

Here, we use the following SVD-QR algorithm that is networks, i.e., determine how many sensors of data should

similar to the one in [2] and [3] to select a set of be selected.
independent data sets that minimize the residual error in a We use the data sets which also has been used in
least-squares sense: Section II, and get one clip, i.e., 8 sensor nodes, each one

1) Given P E RNM, assume N > M, and has 100 samples of data, as the input of the following

rank(P) = r < M denote the rank of P. Determine example.

a numerical estimate r' of the rank of the data sets
matrix P by calculating the singular value decom- Example 1
position • step 1. SVD the input matrix P, get:

P=U[ r O] diag(E) = (14160,74,20,14,13,10,9,7);
10 0 vClearly, E(1, 1) is much larger than E(2,2). That

where, U is an N x N matrix of orthonormalized means we can only select one data set to represent

eigenvectors of ppT, V is an M x M matrix of all the eight sets of data, i.e., f = 1.

orthonormalized eigenvectors of pTp, and E is the • step 2. Partition the V, and get V11 and V21, which

diagonal matrix E = diag(c- 1, -2,.. o,,), where -i are needed in QR decomposition,

denotes the ith singular value of P, and u- > 2 1/Vi = -0.3565, and
"... > 0a > 0. Select f < r' -0.3556- - •-0.3535

2) Calculate a permutation matrix HI such that the -0.3512
columns of the matrix P1 e RNxi in V21 = -0.3546

PH = [ 1 , F 2] (3) -0.3526
-0.3540

are independent. The permutation matrix H is ob- -0.3503
tained from the QR decomposition of the subma- • step 3. sing QR decomposition with column pivoting
trix comprised of the right singular vectors, which to determine the economy matrix H. Since in this



example, 1 = 1, we only care about the first column IV. CONCLUSIONS AND FUTURE WORKS

of H, In this paper, we used MOTE-Kit[5] testbed to collect

0 Ithe real data sets from different scenarios. First, we proved

0 there exists not only self-similarity in the data from one

0 sensor node, but cross-similarity among the data of all the
H(:, 1)= 0 adjacent sensor nodes also. That demonstrated that there

0 exists redundancy in the collected data of the wireless

0 sensor networks. Taking energy efficiency and better per-

0 formance into consideration, we proposed to use SVD-QR

That means the" first column of the input matrix P to select the principal data sets from particular sensor nodes

i.e., the data collected from the first sensor node is the to represent the all the sensor nodes in the neighborhood

most-significant one, which can effectively represent effectively. We gave two examples to show how to do it.

all the eight sensor nodes in the neighborhood. • The future work includes theoretical analysis on how
much information loss after we reduce the redundancy?
Does this loss affect the performance of the wireless sensor

Example 2 networks?
What if we select more than one set of data? We have

the following example to explain. We get another clip of REFERENCES
data, still has 8 sensor nodes, each one has 100 samples [1] Chen, S., S. A. Billings and W. Luo, "Orthogonal Least Squares
of data, as the input. Methods and their Application to Nonlinear System Identification,"

Int. J. Control, vol. 50, no. 5, pp. 1873-1896, 1989." Step 1. SVD the input matrix P, get: [2] Golub, G. H., and C. F. Van Loan, Matrix Computations, Johns
diag(E) = (14759,368,275,200,186,146,97,68). Hopkins Univ. Press, MD 1983.
Oberserve EY, the decreasing scope from E(1, 1) to [3] Golub, G.H., "Numerical Methods for Solving Least Squares

(2, 2) is not as large as it is in Example I . So, we Problems," Numer. Math, no. 7, pp. 206-216, 1965.
[4] M. E. Crovella and A. Bestavros, "Self-similarity in world wide web

have ? = 2. traffic: evidence and possible causes:' IEEE Trans. on Networking,
" step 2. Partition the V, and get V11 and V21, vol. 5, no. 6, pp. 835-846, Dec 1997.

-0.3503 0.1919 [5] J. L. Hill, and D. E. Culler, " Mica: A Wireless Platform for Deeply
V11 - -0.3582 -0.1618 and Embedded Networks "' IEEE, Micro, Volume: 22, Issue: 6, pp.5 -12-24, Nov.-Dec. 2002.

-0.3528 0.3369 [6] R. Min, M. Bhardwaj, S. Cho, N. Ickes, E. Shin, A. Sinha, A. Wang,
-0.3570 -0.8685 and A. Chandrakasan, "Energy-centric Enabling Technologies for

Wireless Sensor Networks," IEEE Wireless Coomun., vol. 9, pp.

V21 -0.3580 -0,1417 28-39, Aug 2002.
-0.3525 0.0853 [7] W. Stallings, High-Speed Networks: TCP/1IP and ATM Design
-0.3585 0.1548 Principles, Upper Saddle River, NJ, 1998.

[8] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, "Self--0.3406 0.1338 similarity through high-variability: statistical analysis of ethemet
"• step 3. sing QR decomposition with column pivoting LAN traffic at the source level," IEEE Trans. on Networking, vol.

to determine the economy matrix II. Since • = 2, we 5, no. 1, pp. 71-86, Feb 1997.

only care about the two column of 11, [9] W. D. Blair and Y. Bar-Shalom, "Tracking Maneuvering Targets with
Multiple Sensors: Does More Data Always Mean Better Estimates?,"

0 0 IEEE Trans. on Aerospace and Elec. Systems, vol. 32, no. 1, pp. 450-
0 0 455, Jan 1996.

0 1
1 0II(:,I1:2) = 0 0

0 0
0 0
0 0

That means the forth and third columns of the input
matrix P, i.e., the data collected from the forth and
third sensor nodes are the most-significant ones, which
can effectively represent all the eight sensor nodes in
the neighborhood. 0

From our plenty of simulations, the significant one(s) are
changing, that depends on the change of the environment.
However, we can define a coherent time, in this time, the
environment is assumed to keep stable to a certain extend.
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Abstract - Wireless Sensor Networks (WSN) are designed to unusual increasing of the temperature should be a necessary
monitor physical phenomena. The main task of WSN is to per- warning to people. Both the appearance of enemies and the
form event detection, tracking, and classification. So, com- unusual increasing of the temperature can be seen as events.
pared with traditional ad-hoc networks, WSN is event-centric. Because of the energy constraint of WSN mentioned previ-
Therefore, an important question in WSN is to detect events. In ously, the ideal state of WSN should be event-driven, so that
this paper, we present two methods to do event detection, one we can power off the communication part at most of the time.
is Double Sliding Window Detection, the other one is Fuzzy Only when certain sensor nodes detect an event, they trigger
Logic approach. The accuracy of the results is established via the RF channel, and transmit the useful information to bases-
sensor network testbed and simulations. tation or headquarters. Therefore, event-detection is one of the

key issues for WSN.
Keywords - Wireless sensor networks, fuzzy logic systems, In this paper we present two approaches of event-detection
event detection. for WSN, double sliding window and hybrid event-detection

using fuzzy logic system. We use Berkely MICA2 motes[4] as
our testbed and evaluate the event-detection approaches based

I. INTRODUCTION on the acoustic data collected by the testbed in different exper-
iments.

The remainder of the paper is organized as follows, the
The infusion and maturation of the Micro Mechanical Sys- sensor model is given in Section II. The double sliding win-

tem(MEMS), computations, and wireless communication tech- dow and hybrid event-detection based on fuzzy logic sytem
nologies has advanced the development of Wireless Sensor approaches are presented in Section III and Section IV respec-
Networks (WSN). In WSN, a large amount of low cost sen- tively. Simulation results and discussions are presented in sec-
sor nodes are densely deployed to monitor the environment of tion V. Section VI concludes this paper.
interest. Due to the various applications [2] [3], WSN has gen-
erated flurry of research activity.

Sensor nodes are typically powered by small batteries that
are hard to replace or recharge. Hence, energy constraint is II. ACOUSTIC SENSOR MODEL

a unique character of WSN compared with traditional wire-
less ad-hoc networks. Energy comsuption occurs in three do-
mains: sensing, data processing (including AD/DA and digital Acoustic amplitude sensor node measures sound amplitude
signal processing), and communications[5]. According to[l], at the microphone. Assuming that the sound source is a point
the sensor, signal processing parts operate at low frequency source and sound propagation is lossless and isotropic, a root-
and consume less than 1mW. This is over an order of magni- mean-squared (RMS) amplitude measurement z is related to
tude less than the energy consumption of the communication the sound source position X as
part. Therefore, we prefer less communication/data exchange
between sensor nodes but more local processing implemented Z a

by one single sensor node so as to increase the lifetime of the lix- W,(

WSN.
The main goal of WSN is to monitor physical world. Usu- where a is the RMS amplitude of the sound source, ; is the

ally, people are more intereted in unexpected events. For ex- location of the sensor, and w is RMS measurement noise [6]. In
ample, in a scenario of battlefield, people are more interested in this paper, we use Xbow wireless sensor network professional
the appearance of enemies. If a WSN is to monitor forest-fire, developer's kit MOTE-Kit for data collection.



III. DOUBLE SLIDING WINDOW EVENT-DETECTION IV. HYBRID EVENT-DETECTION BASED ON FUZZY
LOGIC SYSTEM

In [9],the acoustic energy in a fixed period of time is inte-
grated, when it exceeds a threshold, the authors claim a detec- Using the double sliding window algorith to do event-
tion of event occurred, as: detection is a good approach. However, if an event contin-

M-1 uously appears in the sensing range of a node, the ratio mra

E. = : zn_-m 1
2 , (2) will still be flat. The probability of detection will decrease ac-

m=o cordingly. In order to solve this problem, we present a hybrid

Es Ž! Ethreshold. (3) event-detection algorithm based on fuzzy logic system.

However, this simple method suffers from a significant draw- A. Overview of Fuzzy Logic Systems
back; namely, the value of the threshold depends on the sensed
signal energy. When there is no event occuring in the sensing
range, the sensed signal consists of only noise. The level of Figure 2 shows the structure of a fuzzy logic system
the noise power is generally unknown and can change when (FLS) [7]. When an input is applied to a FLS, the inference en-
the environment changes or if unwanted interferers go on and gine computes the output set corresponding to each rule. The
off. Therefore, it is quite difficult to set a fixed threshold. We defuazzifer then computes a crisp output from these rule output
design a double sliding window algorithm for event-detection sets. Consider a p-input 1-output FLS, using singleton fuzzifi-
so as to alleviate the threshold value selection problem. cation, height defuzzification [7] and "IF-THEN" rules of the

The double sliding window event-detection algorithm cal- form [81
culates two consecutive sliding windows of the sensed signal R1 : IF x, is Ft and x 2 is F2 and ... and x, is F1, THEN y is
energy. The basic principle is to form the decision variable as G1.
the ratio of the total energy contained inside the two windows.
Figure 1 shows the windows A and B and the response of the Assuming singleton fuzzification, when an input x' =

ratio mn to a sensed event. It can be seen that when only noise {xi,... , x' } is applied, the degree of firing corresponding to
is sensed the response is flat, since both windows contain ide- the lth rule is computed as
ally the sam e am ount of noise energy. 1 (ý' * I ... * IF 1 ( x% ) = T1/ uF ! ( x) (7)(X) 2(X) *; (',

Event I where * and T both indicate the chosen t-norm. There are

many kinds of defuzzifiers. In this paper, we focus, for illus-
A 1 B ]trative purposes, on the height defuzzifier [7]. It computes a

crisp output for the FLS by first obtaining the height, pt, of

Thi every consequent set G', and, then computing a weighted aver-
m - -- age of these heights. The weight corresponding to the Ith rule

consequent height is the degree of firing associated with the lth

rule, 7Ti!__IFL (xi), so that
Fig. 1. The response of the double sliding window event-detection algorithm.

The calculation of the window A and window B value is yh(x') (8)=1 I F! x
shown as M-1 EM=1 "i'zF (xi)

Ea = Z Jzn-m 12, (4) where M is the number of rules in the FLS. In this paper, we
m=o design a FLS for event-detection of WSN.
M

Eb = E lZn+m 12. (5) B. Hybrid event-detection algorithm
m=1

Then the decision variable m, is
E. We have two inputs for the FLS:the accumulated signal en-

mn E (6) ergy E. in afixed period of time and the ratio of the accumu-
Eb' lated signal energy in two consecutive sliding windows min.

The advantage of this approach is the decision variable mn The linguistic variables used to represent them were divided
does not depend on the sensed signal energy, but on the ratio into three levels: low, moderate, and high. The consequent
of the energy of two consecutive windows. - the possibility that an event occurs - was divided into five
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Fig. 2. The structure of a fuzzy logic system.

levels,very strong, strong, medium , weak and very weak. We o 3 4 /1-0 1 2 3 4 5 6 7 8 9 10

used trapezoidal membership functions (MFs) to represent low, (a)
high, very strong, very weak; and triangle MFs to represent
moderate, medium, strong, weak. We show these MFs in Fig-
ure 3(a) and 3(b).

Based on the fact that when event occurrs, ES or ma should
be high. We design a fuzzy logic system using rules such as: verw.ek weak ,o -g .,t•hg

Rt : IF E, is Fl' and m,, is F2, THEN the possibility that
there is event (y) is GC.

where 1 = 1,..., 9. We summarize all the rules in Table 1.

Table 1. Rules for event-detection. Antecedent 1 is Ea, Antecedent 2 is ma.

Rule Antecedent 1 Antecedent 2 Consequent
I low low very weak 0 1 2 3 4 5 0 7 8 5 10

2 low mod weak (b)
3 low high mod
4 mod low weak Fig. 3. MFs used to represent the linguistic labels. (a) MFs for antecedent,

5 mod mod mod and (b) MFs for consequent.
6 mod high strong
7 high low mod
8 high mod strong VI. CONCLUSIONS
9 high high very strong

In this paper, we proposed two event-detection algorithms
in Wireless Sensor Networks, Double Sliding Window scheme

V. SIMULATIONS and hybrid approach based on Fuzzy Logic System. We use
the basic data set collected by MOTE-Kit[4] testbed and white
Gaussian Noise is added. Simulation results show that both
the Double Sliding Window and the hybrid scheme based on

Figure 4 shows the basic data set, which was colletecd from FLS outperform the existing Signal Strength event-detection
Berkely MICA2 motes, we used in our simulations. In order algorithm in terms of both the probability of detection and the
to get the probability of detection P - d, and probability of probalibity of false alarm.
false alarm P - f, white Gaussian Noise is added, SNR is
10dB. We ran 100,000 Monte-Carlo simulations. The results VII. ACKNOWLEDGEMENT
of each algorithms are summarized in Table 2. Obviously,
in terms of both Pd and Pf, the performances of both Dou-
ble Sliding Window scheme and hybrid event-detection algo- This work was supported by the Office of Naval Research
rithm based on FLS are much better than that of signal strength (ONR) Young Investigator Award under Grant N00014-03-1-
event-detection algorithm. 0466.
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Table 2. Probabilities of detection and false alarms.

Pd Pf
Signal Strength event-detection 69.75% 0.08%

Double Sliding Window event-detection 91.499% 0.02%
Hybrid event-detection based on FLS 99.97% 0.05%
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Abstract--Energy-aware technique to reduce energy consump- have very rough readings which can hardly be fitted into the
tion in distributed sensor networks has become a prominent topic above binary compressing schemes.
in sensor network research. Various sensor network applications In this paper, we address the spectrum efficient coding
have taken energy efficiency into consideration. In the case of
correlated binary sources, distributed source coding has been scheme for correlated non-binary sources in wireless sensor
literally studied in information theory. However, data sources networks. Our approach attempts to provide a solution to
from real sensor networks are normally non-binary. In this paper, Chief Executive Officer (CEO) problem. The goal of the CEO
we proposed a spectrum efficient coding scheme for correlated problem is to recover as much information as possible about
non-binary sources in sensor networks. Our approach constructs the actual event from the noisy observations, while minimizing
the codeword cosets for the interested source, taking advantage the total information rate. We propose to exploit the statistical
of statistical characters of the distinct observations from sensor
nodes. The coset leaders are then transmitted via the channel characters of real sensor readings before constructing code-
and decoding is performed with the available side information, word cosets. From the approximate Gaussian readings, Lloyd-
Simulations are carried out over independent and identically Max quantization is applied to minimize the mean square
distributed (i.i.d) Gaussian sources and data collected from Xbow distortion. To save communication spectrum, a coset encoder is
wireless sensor network test bed. Simulation results show that the
proposed scheme performs at 0.5 - 1.5 dB from the Wyner-Ziv designed to reduce the transmitted bits based on the probability
distortion bound. distribution of quantized values. We show that source encoding

can be completed in a fully distributed way. Each sensor
I. INTRODUCTION encodes its own readings without knowing what the other

sensors have measured. Our work differs from previous ones
Wireless sensor network consists of certain amount of small not only in the non-binary sources but in proposing a practical

and energy constrained nodes. Such networks are normally coset encoding scheme for real senor readings. Simulations
deployed for data collection where human intervention after are carried out over independent and identically distributed
deployment, to recharge or replace node batteries may not be (i.i.d) Gaussian sources and data collected from Xbow wireless
feasible, resulting in limited network lifetime. Failure of an sensor network test bed. Simulation results show that the
amount of sensors due to energy depletion has a significant proposed scheme performs at 0.5 - 1.5 dB from the Wyner-Ziv
impact on the functioning of the entire wireless sensor net- distortion bound.
works. This paper is organized as follows. In section II, we briefly

Various research has been done to alleviate the energy con- review the basic concept of distributed source coding for cor-
sumption in wireless sensor networks, from hardware design related information. Section III discusses the intuition behind
of individual sensor to routing and topology construction of our approach. Section IV details the coset construction based
the whole network. Among which, one distinct technology on the statistical knowledge of sensor readings. Simulation
for energy-efficient wireless sensor networks is distributed results are presented in Section V. Section VI concludes with
source coding (DSC) [1], [2]. DSC was proposed to encode a summary.
the correlated sensor readings separately, i.e. sensors encoding
the readings do not communicate with each other. After the IL PRELIMIARIES
distributed encoding, the compressed data is sent to a central In this section, we review the basic concepts of dis-
hub node for joint decoding. Further research on this topic tributed source coding for correlated information and introduce
demonstrated that convolutional codes [3], Turbo and LDPC Slepian-Wolf coding for lossless source coding and Wyner-Ziv
codes [4], [5] performed well in distributed compression for coding for the lossy case.
sensor networks. All these approaches are based on binary Consider a distributed wireless sensor network consisting
distributed sources with refined correlation to each other, of individual sensors that monitor the sensor field. These
However, in a practical sensor network or even in a lab test bed sensors transmit their highly correlated data to a central
of wireless sensor network, the distributed deployed sensors hub node to reconstruct the observations. Transmission of



redundant information can be easily avoided if the sensors
communicate with each other but such inter-node cooperation H(X,Y)
requires higher bandwidth and consumes more energy in
communication. Slepian and Wolf in [6] proved that if no
communication among the sensors, theoretically there was no ----- Achievable rates'with
loss in performance under certain conditions. After [6] the ,Slepian-Wolf Coiling

Slepian-Wolf theorem has been extended to the lossy coding
of continuous-valued sources by Wyner and Ziv [7]. cC

A. Slepian- Wolf Coding

Let X and Y be two correlated independent and identically H(YIX) ......----------------
distributed (i.i.d) binary sources. For lossless compression B

with X' = X and Y' = Y after decompression, we know
from Shannon's source coding theory [8] that a rate given by H(XIY) H(X) H(X,Y)

the joint entropy H(X, Y) ofX andY is sufficient if we are Point A: compression of X with side information Y at the joint decoder

encoding them together.
Fig. 1 gives an example of joint encoding and distributed Fig. 2. The Slepian-Wolf region for two binary sources

encoding of two binary sources. In Fig. I (a), encoder X
compress X into H(X) bits per sample and based on the
complete knowledge of X at both encoder and decoder, Y approached by exchanging the roles of X and Y and all points
is then compressed into H(YIX) bits per sample, while in between the two comer points can be realized by time-sharing.
Fig. I (b), encoder X and Y do not communicate and perform
separate encoding.

COREM ELATED
SOURCES DECODER Fig. 3. One example of Slepian-Wolf coding: Lossless source coding with

ENCOER Y side information at the decoder

W B. Wyner-Ziv Coding

Slepian-Wolf scheme focused on lossless source coding of
x xO_ discrete sources with side information at the decoder. How-

CORRELATED ever most sensor network applications deal with continuous
SOURCES DECODER sources, the rate distortion with side information at the decoder

ENCOE L thus becomes a big concern. The problem to solve in the

lossy source coding is how many bits are needed to encode
(b) X under the constraint that the average distortion between X

and X' is E[d(X, X)] < D, assuming the side information YFig. I. Correlated source coding configuration. (a) Joint encoding ofad.Thenorsomuitewhechteradaae (XY is available only at the decoder.
and Y. The encoders communicate with each other and a rate H(X, Y)isailbeoyathedcer
is sufficient. (b) Distributed encoding of X and Y. The encoders do not Wyner and Ziv [7] first considered this problem knd gave
communicate. Slepian-Wolf theorem proved that H(X, Y) is also sufficient, the rate-distortion function R* (D) for both discrete and

continuous cases and general distortion metrics d(.). Fig. 4
The Slepian-Wolf theorem [6] states that if X and Y are is an illustration of Wyner-Ziv coding. In general, Wyner-Ziv

correlated according to some arbitrary probability distribution coding set up the Slepian-Wolf coding in that coding of X is
p(x, y), then X can be compressed separately (without access with respect to a fidelity criterion rather than lossless.
to Y) without losing performance comparing to the condition
in Fig. 1 (a). It says that the achievable region of DSC for x LOSSY SOURCE R>=RW*(D) OINTSOURCE X

discrete sources X and Y is given by Rx >_ H(XIY), Ry > E OD R ( I
H(YIX) and Rx +Ry > H(X, Y), which is shown in Fig. 2.

For practical Slepian-Wolf coding, the first attemp is to y
approach the comer point A in the Slepian-Wolf rate region
of Fig. 2 with R1 + R 2 = H(XIY) + H(Y) = H(X, Y). Fig. 4. Wyner-Ziv coding or lossy source coding with side information
This is actually a problem of source coding of X with side
information Y at the decoder as shown in Fig. 3. Similarly the But the important thing about Wyner-Ziv coding is that it
other comer point B of the Slepian-Wolf rate region can be normally suffers rate loss when compared to lossy coding of X
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ENCODER DECODER Fig. 6. Noisy observations of acoustic signal strength from four distributed
sensors. The four sensors are not in equal distance to the acoustic source in

Fig. 5. Block diagram of a generic Wyner-Ziv coder network.

III. INTUITION BEHIND APPROCH networks. We are interested in the measurement noise in
In the above section, we discussed lossless (Slepian-Wolf) wireless sensor network specifically in the Chief Executive

and lossy (Wyner-Ziv) source coding with side information Officer (CEO) problem [9]. In this particular application, for
available only at the decoder. Most of the work in DSC so example, the CEO of a company employs a number of agents
far has been focusing on the two problems. In wireless sensor to observe an event and each of the agents provides the CEO
network, employing current DSC schemes requires the sensor with his/her noise version the event. The agent are not allowed
nodes transmitting correlated information to cooperate in a to convene, and the goal of the CEO is to recover as much
small group so that one node provides side information and information as possible about the actual event from the noisy
others compress the information down to the Slepian-Wolf or observations received from the agents, while minimizing the
the Wyner-Ziv limit. total information rate from the agents. The CEO problem can

Tha major concern for practical application of DSC is the then illuminate the measurement noise at the sensor node.
correlation model. Theoretically, two correlated non-binary Preliminary practical code constructions for the CEO prob-
sources can be constructed easily. An example with uniform lem appeared in [10], [1 1], based on the Wyner-Ziv coding
distribution is shown as follows: approaches, but they are only limited to special cases. Fig 7 is

"• Let X = XoX 1 ... and Y = YoY 1... be two correlated a CEO example in wireless sensor network where the central
non-binary sequences taking values in [L, R]. hub node is responsible to recover the information from the

"• Generate the i.i.d sequence X using the probability noisy measurements.
distribution P(Xk = i) = 1/(R - L) where i E [L, R].

" Define thesequence Yfrom the sequence Xusing the *- ®.
conditional probability distribution P(Yk = jlXk = i) = --.-

pij, where i, j E [L, R]. The joint probability distribution
between sources will be denoted by P(Xk = i E Acoustic Event

= pij/(R - L). ..........
Although significant efforts have been put in DSC design for

various correlation models, in real sensor network there still QrD Sensor Node

exist many situations that is hard to come up with certain joint Query/Data ......

probability functions. For instance, the correlation statistics of
the video surveillance networks can be mainly a function of ,
the sensors' location. Fig 6 is another example of the noisy
versions of the acoustic signal strength collected using the
Xbow wireless sensor network professional developer's kit Central H
MOTE-Kit.

In this paper, we address the issue of lossy coding for Fig. 7. A CEO example of sensor network. The central hub node broadcasts
correlated non-binary sources in the Xbow wireless sensor the queries and collects the noisy observations from the sensors.



IV. CONSTRUCT CODEWORD COSETS TABLE I
RESULTS FROM 8-LEVEL LLOYD-MAX QUANTIZATION

For correlated binary sources X and Y, Y is a noisecorrupted version of X as Y = X + N, where N is an Codebook Occurring Probability Binary Codebookcrutd498.09 0.4923 000

additive Gaussian noise. The correlation between the interested 500.37 0.2809 001

output X and the side information Y can be modeled with a 503.06 0.1590 011
"virtual" correlation channel, then a good channel code over 507.3 0.0457 010

this channel can provide us with a good Slepian-Wolf codes. In 511.31 0.0136 110
515.26 0.0051 ill

a sense, the seemingly source coding problem of Slepian-Wolf 523 0.0027 101
coding can be considered as a channel coding problem. 544 0.0008 100

In this section, we detail our spectrum efficient coding
scheme for correlated non-binary sources in wireless sensor
networks. For interested information X, the encoder side con- From Table I, the first codeword after quantization 498.09
sists of two parts: source encoder and coset encoder. We apply occurs at a dominant probability of 49.23%. The probability of
Lloyd-Max quantization in souce encoder which conducts occurence decreases dramatically along the initial codebook.
the design of the initial codebook. The non-binary sources We assign the binary codewords such that along the probability
are then represented by the binary codewords according to decreasing, every adjacent codeword differs in only 1 bit.
the quantization levels. A coset encoder is constructed to Suppose sensor node 3 (see Fig 6 (c)) is transmitting the
save transmitting bits over channels. A n-bit codeword is side information Y for decoding. Data from sensor node 3
transmitted by a m-bit (m < n) coset leader to achieve a is quantized separately using Lloyd-Max quantizer. Now we
compression ratio of n : m after the coset encoder. Side have XQ and YQ at 3-bit correlated binary codewords. Perfect
information Y will be transmitted at full rate, i.e. not through coset encoder [1] requires that XQ and YQ are correlated in
the coset encoder. The block diagram of our coding scheme the way that the Hamming distance between XQ and YQ is
is illustrated in Fig 8. no more than one. Then the cosets for XQ are constructed

that the elements within each coset have maximal Hamming
X LLOYD-MAX COSET LEADER X distance dH = 3 as depicted in example 1.

EQUANTIZATION NCOEDER COSE X E A In our work, the correlation between XQ and YQ is un-
ECDRDECODER ESTIMATION I

..................................... known or can hardly reach the perfect correlation. But with
........................................ the knowledge of the codewords probability distribution, the

coset construction could be done in a different way.
We propose to design the coset sets minimizing the overall

Fig. 8. Block diagram of the asymmetric coding scheme for correlated non- cross ratio. We define the cross ratio as the ratio that within
binary sources

one coset, the codeword with less occuring probability will
We next give an example of constructing the coset encoder. cross the other. We intend to decrease the decoding failure by

reducing the cross ratio while keeping the Hamming distance
within each coset as large as possible. Table II gives the cross

Example 1: Construct Codeword Cosets with Hamming ratio of two different coset sets.
Distance dH = 3

For 8-level Lloyd-Max quantization, the input to the TABLE II

coset encoder is a 3-bit binary codeword XQ E COLLISION RATIO OF Two COSETS SETS

[000,001,011,010,110,111,101,100]. Assuming the Ham- Coset Set I Cross Ratio Coset Set 2 Cross Ratio
ming distance between XQ and the quantized binary side (000, 111) 0.01 (000,110) 0.027
information YQ is dH(XQ, YQ) < 1, the cosets for XQ can (001,110) 0.046 (001,111) 0.018

(011,100) 0.01 (011,101) 0.017be constructed using the parity-check matrix H (010,101) 0.056 (010, 100) 0.017

Overall 0.0305 Overall 0.01975

H = 1 01 (1)
From Table II, we see that coset set 2 has less cross ratio

Four coset sets are constructed as C1 = [000, 111], C2 = even though the Hamming distance within each coset is dH -

[001,110], C3 = [010,1011 and C4 = [011,100]. The 2 but not 3.
transmitted coset leader Xc is associated with the syndrome The parity-check matrix to construct the codeword coset 2
s = XQHT. Sending the 2-bit coset leader instead of the with Hamming distance dH = 2 is shown as bellow:
original 3-bit XQ achieves a compression ratio of 3 : 2.

Now let us consider the noisy observation from sensor node 1H 1 0 (2)
1 (see Fig 6 (a)) as the interested information X. Results from At the decoder, we use the side information YQ to look
8-level Lloyd-Max quantization are presented in Table I. for the most-likely codeword from the coset represented by



the transmitted coset leader. The decoder then get the optimal -14 -- ___

estimation of X using all received information. -16od "1 at 32-1evel

V. SIMULATION RESULTS

Our simulations are performed over the acoustic noisy -& .........e
observations from the Xbow wireless sensor network pro- Or-
fessional developer's kit MOTE-Kit. We collected 8 sets of •.
acoustic noisy version from 8 distributed deployed sensors -20.

in a lab. Information from the sensor closest to the acoustic CD

source is set as side information for decoding. All others are -22 .

encoded separately and reconstructed at the decoder with the °
side information. The correlation-in-dB between the interested
information and the side information is presented in Table III. -2 - Wyner-Ziv Bound

-e- 16-level

TABLE IlI -2 - 8-level

CORRELATION-IN-DB BETWEEN X AND Y 5 6 Crli9 10 11 12 13
Correlation SNR in dB

Sensor Node Correlation-in-dB
1 5.7988 Fig. 10. Normalized Distortion for R=2bits/sample, Lloyd-Max quantization

2 5.0864 and coset encoder.

3 6.3903
4 4.2262
5 4.2343 We employ 8-level, 16-level and 32-level Lloyd-Max quan-
6 4.1522 tization. Each is partitioned into two cosets, where each coset
7 5.5238 set contains 2, 4 and 8 codewords respectively. The number

of samples used for the Monte Carlo simulations is 107.

Due to the packet loss in data collecting at the central hub Fig. 9 shows the probability of decoding error for the above
node, the correlation between the interested information X and three schemes and normalized distortion with correct decoding
the side information Y from sensor node 8 is pretty low. We only is plotted versus correlation SNR for the same schemes
choose two sensor nodes (node 1 and node3) with the highest in Fig. 10. Observe that for a given correlation SNR, as
correlation to side information Y for our simulation, the number of quantization levels increases, the normalized

For comparison, we generate two ideal i.i.d Gaussian se- distortion decreases and the probability of decoding error
quences X and Y correlated by Y = X + N, where X has increases. Ideally for a given transmission rate, we want to
zero mean and unit variance and N is the zero mean Guassian quantize with a large number of levels to cut down distortion,
noise with variance UN. Y, the corrupted version of X is the but the tradeoff between the distortion and probability of
side information used for joint decoding. decoding errors put a constraint in this. As can be noted from

Fig. 9 and 10, at 8-level quantization, performance of sensor
100 readings from node l and node 3 are approximate 0.5 dB from

...... the one of ideal i.i.d Gaussian sources.
10- .. In coset encoding, we compare different coset construction

. . methods. Fig. 11 gives the result of coset set I and coset set
"2 102 at 8-level quantization. The performance of coset set 2 is

N l lslightly better than the one of coset set 1.
Slo10 Last we employ our coding scheme to all 7 sensor nodes

and compute the actual transmitted data bits. We process the
information observed in the common epoch and discard the
incomplete observations. Under the scheme of two coset sets,

- the real transmitted data bits remain the same for 8-,16- andS10 32-level cases. Results are presented in Table IV.

10 - 8-level . TABLE IV
0 - 3-level . COMPRESSION RATIO OF REAL TRANSMITTED DATA

5 6 7 8 9 10 11 12 13 14 Levels Original bits Transmitted bits Compression Ratio
Correlation SNR in dB 8-level 78339 31815 2.46

16-level 104532 31815 3.29
Fig. 9. Probability of Error for R=2bits/sample, Lloyd-Max quantization and 32-level 130665 31815 4.11
coset encoder.
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VI. CONCLUSIONS

In this paper, we have proposed a spectrum efficient coding
scheme for correlated non-binary sources in sensor networks.
Instead of using theoreticaly ideal data, our scheme is based
on the statistic characters of the correlated non-binary sources
from real sensor network. The coset construction introduced
in this paper leverages the inherent correlations between
sensor observations, but more importantly by minimizing the
cross ratio, decreases the probability of decoding error. The
proposed scheme performs at 0.5 - 1.5 dB from the Wyner-
Ziv distortion bound. We believe our approach provides a
practical solution to distributedly compress the acoustic sensor
observations and can be extended to the CEO problem. Our
future work will concentrate on spectrum efficient coding for
distributed sources with memory which is rarely studies so far.
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Abstract-A wireless sensor network (WSN) is designed to and digital signal processing), and communications. [5] dis-
perform various information processing tasks such as event covered that the sensor, signal processing parts operate at low
detection, target tracking and data classification. Comparing with frequency and consume less than 1mW. This is over an order
traditional centralized networks, networked sensing offers unique
advantage in improved robustness and scalability. Measures of of magnitude less than the energy consumption of the commu-
performance for these tasks are well defined, including detection nication part. Therefore, we prefer less communication/data
of false alarms or misses, classification errors, and track quality, exchange between sensor nodes but more local processing
In this paper, we present a fundamental performance analysis implemented by one single sensor node so as to increase the
of event detection in wireless sensor networks. Our performance lifetime of the WSN.
analysis is based on a new detection scheme - double sliding The main goal of wireless sensor networks is to monitor
window (DSW) even detection. We compare it theoretically
against the fixed threshold approach. physical world. In most of the time, no event happens in the

sensed field or surveillance zone. So the sensed data are not
1. INTRODUCTION necessarily to be stored for a long time or be transmitted to

Research on sensor networks was originally motivated the gateway. Usually, people are more interested in unexpected
by military applications. Starting around 1980, networked events. For example, in a scenario of battlefield, people are
microsensors technology has been widely used in military more interested in the appearance of enemies. If a wireless
applications. One example of such applications is the Co- sensor network is to monitor forest-fire, unusual increasing
operative Engagement Capability (CEC) developed by the of the temperature should be a necessary warning to people.
U.S.Navy. This network-centric warfare consists of multiple Both the appearance of enemies and the unusual increasing
radars collecting data on air targets [1]. Other military sensor of the temperature can be seen as events. Because of the
networks include acoustic sensor arrays for antisubmarine energy, storage, and memory constraints of wireless sensor
warfare such as the Fixed Distributed System (FDS) and the networks, the ideal state of wireless sensor networks should
Advanced Deployable System (ADS), and unattended ground be event-driven, so that the RF communication circuits can
sensors (UGS) such as the Remote Battlefield Sensor System power off at most of the time. Only when certain sensor nodes
(REMBASS) and the Tactical Remote Sensor System (TRSS). detect an event, they trigger the RF channel, and transmit

Nowadays small and inexpensive sensors based upon mi- the useful information to gateway or headquarters. Therefore,
croelectromechanical system (MEMS) [2] technology, wireless event-detection is one of the key issues for wireless sensor
networking, and inexpensive low-power processors allow the networks, and it's a very efficient way of self-managing, which
deployment of wireless sensor networks for various non- helps to release the memory and storage constraint and energy
military applications, from environment and habitat monitor- constraint.
ing, to industrial process control, to infrastructure security [3] Performance of wireless sensor network applications is
and automation in the transportation. measured in several ways including detection of false alarms or

A wireless sensor network (WSN) consists of certain misses, classification errors, and track quality. In this paper, we
amount of small and energy constrained nodes. Basic com- present a fundamental performance analysis of event detection
ponents of sensor node include a single or multiple sensor in wireless sensor networks. We introduce a new scheme of
modules, a wireless transmitter-receiver module, a computa- event detection for WSN - double sliding window (DSW)
tional module and a power supply module. Such networks are event detection and analyze the fundamental performance: the
normally deployed for data collection where human interven- probability of detection and the probability of false alarm over
tion after deployment, to recharge or replace node batteries this new detection scheme.
may not be feasible. Therefore, energy constraint becomes a The rest of this paper is organized as follows. Section II
unique character of WSN comparing to traditional wireless introduce a common type of sensors for tracking: acoustic
ad-hoc networks. According to [4], energy comsuption occurs amplitude sensor model. Double sliding window event detec-
in three domains: sensing, data processing (including AD/DA tion is described in Section III. In Section IV we detail the



fundamental performance analysis over the proposed detection sensor characteristics are relatively stable comparing with the
scheme. Section V concludes this paper. more dynamic measurements.

Eq (1) is a general form of the observation model that
II. ACOUSTIC AMPLITUDE SENSOR MODEL accounts for possibly nonlinear relations between the sensor

Localizing and tracking moving objects is an essential type, sensor position, noise model etc. A special case of (1)
capability for a sensor network in many practical applications, would be
While another class of sensor network applications concerns
with the problem of sensing/detecting a field. Although they h ( x) ) (),t)) + wý (2)
may seem quite different from each other, both require col-

laborative processing among sensor nodes along the temporal where fi is a observation function, and wi is additive, zero

dimension as well as in the spatial domain [6]. In the field mean noise with known covariance.
sensing case, the collaboration among sensors primarily occurs In order to illustrate the idea, we consider the problem

in the spatial domain and occasionally along the temporal of stationary target localization with time-invariant sensor
dimension when the field evolves over time. In our study, we characteristics. In this paper, we assume that all sensors are
focus on on the field sensing/detecting problem. acoustic sensors measuring only the amplitude of the received

sound signal so that the state parameter x is the unknown
A. Notation and Assumptions target position. Note that under our assumption, there is no

We use the following notation in our formulation of the longer a time dependence for x and A i. Assuming that acoustic

sensing/detecting problem in a sensor network: signals propagate isotropically, the parameters are related to

". Superscript t denotes time. We consider discrete times t the measurements by

that are nonnegative integers, ai (3)
"* Subscript i E [1,...,K] denotes the sensor index; K is zi = FX + w (3)

the total number of sensors in the network.
"* Subscript j e [1, ..., N] denotes the target index; N is the where ai is a given random variable representing the am-

total number of targets being observed. plitude of the signal at the target, a is a known attenuation

"* The target state at time t is denoted as xt. For a multi- coefficient, and 1,11 is the Euclidean norm. The term wi is a

target sensing/detecting problem, this is a concatenation zero mean Gaussian random variable with variance o?.

of individual target states xý. CAcoSThe measurement of sensor i at time t is denoted as .Sensor
" The measurement history up to time t is denoted as There are two common types of sensors for detecting and

z -= {z(°), z(1), ..., z(t) }. The measurements may orig- tracking: acoustic amplitude sensors and direction-of-arrival

inate from a single sensor or a set of sensors. (DOA) sensors. In this section, we detail the characteristics of

"• The collection of all sensor measurements at time t are the acoustic amplitude sensors.

denoted as z(t) z ,z (t) (t ) . An acoustic amplitude sensor node measures sound ampli-
1 2tude at the microphone and estimates the distance to the target

In this paper, we consider a single sound source as the based on the physics of sound attenuation. Generally, range
target (N = 1) and the target state xt is the location of the sensors estimate distance based on received signal strength or
target in a two-dimensinal plane. Each sensor measures the time difference of arrival (TDOA).
received signal strength reflected from the target. We make the Assuming that the sound source is a point source and sound
assumption that the sensor characteristics are time-invariant propagation is lossless and isotropic, a root-mean-squared
and the target locates in a fixed position. (RMS) amplitude measurement z is related to the sound source

B. Sensing Model position x as

The time-dependent measurement z~t) of sensor i with a
z= - + w (4)

characteristics APt) is related to the target state x(t) through Ix - ]1
the following observation model, where a is the RMS amplitude of the sound source, C is the

location of the sensor, and w is RMS measurement noise [7].
h (x(t), At)) (1) This is a special case of (3). For simplicity, we model w as a

Gaussian with zero mean and variance or2 .
where h is a function depending on x(0) and parameterized

by Aft), which represents our knowledge about sensor i. III. DOUBLE SLIDE WINDOW EVENT DETECTION
In our study, we consider the sensing model for a single The ability of a sensor receiver to detect a weak echo signal
target with x representing the location of the target. Typical is limited by the noise that occupies the same part of the
characteristics P) about sensor i include sensing modality frequency spectrum as the signal. Detection of an acoustic
(e.g. what kind of sensor i is), sensor position (i and other signal is based on establishing a threshold at the output of the
parameters, such as the noise model of sensor i. Normally, the receiver. If the receiver output exceeds the threshold, a target



is said to be present. This is called threshold detection. Fig. 1
represents the output of an acoustic receiver as a function of
time. The fluctuating appearance of the output is due to the
random nature of receiver noise.

A threshold level in Fig. I is shown by the long dashed :Window:

line. If the signal is large enough, as at A and B, a target A B

is reported to be present, but C is a missed detection at the
given threshold. The signal at C would have been detected Time

if the threshold were lower. But too low threshold increases
the likelihood that noise alone will exceed the threshold and
causes false alarm.

- Threshold level- '

Threshold level
'~A-R - -va~ ---.

RMS valueornoise :Window Window:
- 0A B

• . .. .im... .

Time

Fig. 2. Illustration of double sliding window event detection, A and B are

two continuous sampling windows with name length and B arrives after A.
Time --

Fig. 1. Envelope of the radar receiver output as a function of time. A, B The calculation of the window A and window B value is
and C represent signal plus noise. A and B would be valid detections, but
C is a missed detection shown as

M-1

In [8], the received signal strength S from acoustic sensors = \ Iz- 12

in a fixed period of time is integrated, when it exceeds a S :

threshold, the authors claim a detection of event occurred as:

M-1
M-1 3b = Z•+M-li (8)3= 1z 2  (5) =o

1=0
Then the decision variable R, is

S th Sthreshold (6) Sb

where z denotes the measurement of received signal strength R, = -. (9)
at each sampling point. M is the length of observing/sampling Sa
window. The advantage of this approach is the decision variable R,

However, this simple method suffers from a significant does not depend on the sensed signal energy, but on the ratio
drawback; namely, the value of the threshold depends on the of the energy of two consecutive windows.
sensed signal energy. When there is no event occuring in the IV. FUNDAMENTAL PERFORMANCE ANALYSISsensing range, the sensed signal consists of only noise. The
level of the noise power is generally unknown and can change A. Fixed Threshold Event Detection
when the environment changes or if unwanted interferers go In the acoustic sensor, the sensed signal needs to pass an
on and off. Therefore, it is quite difficult to set a fixed IF filter after the A/D converter. If there is no event (only
threshold. We design a double sliding window algorithm for noise exists) in the observed sampling window, the noise to the
event-detection so as to alleviate the threshold value selectionproblem. sensor at the input to the IF filter can be described by Gaussian

The double sliding window event-detection algorithm cal- probability density function (pdf) with mean value of zero and
uThes twouconsecutive sliding window s eve ethetonsrit nal- variance Vo0. Rice [9] has shown that when Gaussian noise isculates two consecutive sliding windows of the sensed signal passed through the IF filter, the pdf of the noise envelop R

energy. The basic principle is to form the decision variable as follows Rayleigh distribution:
the ratio of the total energy contained inside the two windows.
Fig. 2 shows two consecutive windows A and B (note that R ( R2 (1
window B arrives after window A) and the response of the p(R) =- exp - (10)
ratio R, to a sensed event. It can be seen that when only 00 2

noise is sensed the response is nearly flat, since both windows The probability that the envelop of the noise will exceed
contain ideally the same amount of noise energy. the fixed threshold VD is,



I Window A- Noise Window B - Event

Pfa = V-O Aexp (--¢o)- dR = exp (-_ D (11) Rayleigh Distribution Rice Distribution

4VDV 0 0 2Vbo ) k20ko
which is the probability of false alarm rate.
If there is event occurring, the pdf of the sensed signal to Fig. 3. Case of Detecting an Event (window B arrives after window A)

the sensor at the input of IF filter is Gaussian pdf with mean
value of m and variance 0o. The pdf of the envelop R of the
sensed signal passing the IF filter has a Rice distribution [9]: 1) Probability of Detection: From Fig. 3, in the observing

window A, a zero mean and variance 0o Gaussian noise
P8 (R) = R exp 20 0 o -0 (12) passes through the IF filter, the pdf of the envelope of signal

00 (_ ) R+m (R strength follows Rayleigh distribution as in (10). In window

where Io (z) is the zero-order modified Bessel function. The B, since there is an event occurring, the pdf of the envelope
probability of detection Pd is the probability that the envelope of the sensed signal strength passing the IF filter has a Rice
R will exceed the threshold VD: distribution as in (12).

Let X = 3b, Y = S'a and Z = R, (referring to Section III).
Pd = p,(R)dR (13) We get the pdf of decision variable Z = X/Y in the following.

IV" Since random variable X and Y are identically independent,
which is the probability of detection, we have
We are interested to know the optimal value of threshold

VD. To get VD, we use maximum a posterior (MAP) detection. 00
The decision boundary is fz(z) =] yf.=y.(x = yz)fy(y)dy (17)

f H=0

f(RIH2) = p(H2 ) (14) Using the pdf of observing window A and B, we get,
f (RIHI) p(H2)

where p(HI) is the probability of no events and p(H 2) is the Y yz /y 2 z 2 +m 2 \
probablity of events happening in one observation. Assume we fz (z)) y exo 2i0
have the knowledge of p(HI) and p(H2 ), optimal threshold =oy

VD can be derived from (14). Io j ¢o ] exp -- ody (18)
Let fi • p(Hi)/p(H 2), applying (10) and (12) we get, 0 00 2Vto

The pdf of decision variable Z =R can be get by
R exp(- R2 R exp( R 2 + m 2 )I°(R- ) (15) simplifying (18),

To- P(. _)0=3-x( 2V~,)'a-- (15
Optimal threshold VD is the solution of (15) and VD can f y 3 zo - y2 (1 + z 2 ) + m 2 ] yzm

be written as: fZ (Z) = ~ exp [-JI,(Yz)dy (19)

/0 1 • M 2  The probability of detection in DSW detection scheme, i.e.,
VD k- o p ) (16) the probability that the envelop of the decision variable Z =M (8 2V~oR, will exceed the given threshold SD is,

B. Double Sliding Window Event Detection
In double sliding window (DSW) detection, decision is _ 0 [ y2(1 + Z2 ) + M 2

made over two consecutive sampling windows. According to Pd = dz - exp Io( )dy (20)
the example in Section III, an event or false alarm is reported S v =o 2 e 21V= 0
when the decision variable R. exceeds a given threshold SD
(note SD is different from signal strength threshold VD in
Section IV-A). In the case of two consecutive windwos A and Window A - Noise Window B - Noise
B (note that window B arrives after window A), detecting an Rayleigh Distribution Rayleigh Distribution
event and false alarm occur respectively in the following two
conditions:

"* Detecting an event - Window A represents background Fig. 4. Case of False Alarm (window B arrives after window A)
noise and window B represents the occurring events.

"* False alarm - Window A and B both represent backgroud 2) Probability of False Alarm: When window A and B
noise but the decision variable R8 exceeds the threshold. both represent backgroud noise as shown in Fig. 4 but the

We then analyze the foundamental performance - the prob- decision variable R, exceeds the threshold SD, a false alarm
ability of detection and the probability of false alarm in the is reported. In this case, the pdf of decision variable Z = R,
DSW detection scheme. is derived similarly starting from (17).



Observe that the probability of false alarm depends only=y"yz'_y 2 z 2 
) . y2 on the noise variance and threshold level which is reasonable

fZ (Z) =o exp 2o exp - dy (21) since in this case, no signal but noise gets involved.=0~b 00 2o 5 2b00/ Similarly, we use MAP detection to get optimal thresholdIt follows that: SD in DSW event detection.

Assume 13 =ý p(Hi)/p(H2) (same as in fixed threshold
f z •z)=- y3exp(3 1 + Z 2'•) dy detection), applying (19) and (27) we get:0zz = 0 2-

00 1+z2 2'0z 00 Y3z y2(1y+(+z2)+m2 °zmS2 j 'Y2 exp •-• d•d2  (22) (1+z 2)2 = 3 z ]= exp [ 2 0 1 Ia( )dy (30)

Replacing y2 with s, (22) becomes: which is equivalent to,
z f 1 2 (1+z2)2 =30 [ Y2(l+z2)"m (231

fz(z) = (1 ( )d 00 (31)

z 0_ + z2 , l Z ] (3 Solving (31) gives the optimal threshold SD in DSW event
+ z 2  0 s dexpj (23) detection.

Let 
V. CONCLUSIONS

Measures of performance for wireless sensor network ap-
fs° r ( 1+z~2"• plications are .defined in various ways in which, detectionU(z) = s. d [exp + 2 , s)j (24) probability and false alarm probability, classification errors andtrack quality have been widely used. In this paper, we studiedWe next simplify U(z) in (24) using the method of definite the performance of event detection in WSN. We introduced aintegral: detection scheme - double sliding window (DSW) event detec-

tion and analyzed the fundamental performace - the probability
bf(X)dg(X) lbb of detection and the probability of false alarm over this newf d x) g~x)[-a g(x)fJ(x)dx (25) detection scheme. We believe that our DSW detection will

practically approach or exceed the fixed threshold detection.Comparing (24) and (25), we get f(s) = s and g(s) = Simulations over Xbow WSN professional developer's kit willexp(-(1 + z 2)s/(20o). U(z) can be solved as follows: be provided in the later version.
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Abstract-A wireless sensor network (WSN) is designed to and digital signal processing), and communications. [5] dis-
perform various information processing tasks such as event covered that the sensor, signal processing parts operate at low
detection, target tracking and data classification. Comparing with frequency and consume less than 1mW. This is over an order
traditional centralized networks, networked sensing offers unique
advantage in improved robustness and scalability. Measures of of magnitude less than the energy consumption of the commu-
performance for these tasks are well defined, including detection nication part. Therefore, we prefer less communication/data
of false alarms or misses, classification errors, and track quality. exchange between sensor nodes but more local processing
In this paper, we present a new algorithm of event detection in implemented by one single sensor node so as to increase the
wireless sensor networks. Our performance analysis is based on lifetime of the WSN.
the new detection scheme - double sliding window (DSW) event
detection. We compare it theoretically against the fixed threshold The main goal of wireless sensor networks is to monitor
approach in terms of probability of detection and false alarm. physical world. In most of the time, no event happens in the

sensed field or surveillance zone. So the sensed data are not
I. INTRODUCTION necessarily to be stored for a long time or be transmitted to

Research on sensor networks was originally motivated the gateway. Usually, people are more interested in unexpected
by military applications. Starting around 1980, networked events. For example, in a scenario of battlefield, people are
microsensors technology has been widely used in military more interested in the appearance of enemies. If a wireless
applications. One example of such applications is the Co- sensor network is to monitor forest-fire, unusual increasing
operative Engagement Capability (CEC) developed by the of the temperature should be a necessary warning to people.
U.S.Navy. This network-centric warfare consists of multiple Both the appearance of enemies and the unusual increasing
radars collecting data on air targets [1]. Other military sensor of the temperature can be seen as events. Because of the
networks include acoustic sensor arrays for antisubmarine energy, storage, and memory constraints of wireless sensor
warfare such as the Fixed Distributed System (FDS) and the networks, the ideal state of wireless sensor networks should
Advanced Deployable System (ADS), and unattended ground be event-driven, so that the RF communication circuits can
sensors (UGS) such as the Remote Battlefield Sensor System power off at most of the time. Only when certain sensor nodes
(REMBASS) and the Tactical Remote Sensor System (TRSS). detect an event, they trigger the RF channel, and transmit

Nowadays small and inexpensive sensors based upon mi- the useful information to gateway or headquarters. Therefore,
croelectromechanical system (MEMS) [2] technology, wireless event-detection is one of the key issues for wireless sensor
networking, and inexpensive low-power processors allow the networks, and it's a very efficient way of self-managing, which
deployment of wireless sensor networks for various non- helps to release the memory and storage constraint and energy
military applications, from environment and habitat monitor- constraint.
ing, to industrial process control, to infrastructure security [3] Performance of wireless sensor network applications is
and automation in the transportation. measured in several ways including detection of false alarms or

A wireless sensor network (WSN) consists of certain misses, classification errors, and track quality. In this paper, we
amount of small and energy constrained nodes. Basic com- present a fundamental performance analysis of event detection
ponents of sensor node include a single or multiple sensor in wireless sensor networks. We introduce a new scheme of
modules, a wireless transmitter-receiver module, a computa- event detection for WSN - double sliding window (DSW)
tional module and a power supply module. Such networks are event detection and analyze the fundamental performance: the
normally deployed for data collection where human interven- probability of detection and the probability of false alarm over
tion after deployment, to recharge or replace node batteries this new detection scheme.
may not be feasible. Therefore, energy constraint becomes a The rest of this paper is organized as follows. Section II
unique character of WSN comparing to traditional wireless introduce a common type of sensors for tracking: acoustic
ad-hoc networks. According to [4], energy comsuption occurs amplitude sensor model. Double sliding window event detec-
in three domains: sensing, data processing (including AD/DA tion is described in Section III. In Section IV we detail the



fundamental performance analysis over the proposed detection sensor characteristics are relatively stable comparing with the
scheme. Section V concludes this paper. more dynamic measurements.

Eq (1) is a general form of the observation model that
II. ACOUSTIC AMPLITUDE SENSOR MODEL accounts for possibly nonlinear relations between the sensor

Localizing and tracking moving objects is an essential type, sensor position, noise model etc. A special case of (1)
capability for a sensor network in many practical applications, would be
While another class of sensor network applications concerns
with the problem of sensing/detecting a field. Although they h (x(t), A.t)) = f (x(t), A•t) + wý (2)
may seem quite different from each other, both require col-
laborative processing among sensor nodes along the temporal where fi is a observation function, and wi is additive, zero

dimension as well as in the spatial domain [6]. In the field mean noise with known covariance.

sensing case, the collaboration among sensors primarily occurs In order to illustrate the idea, we consider the problem
in the spatial domain and occasionally along the temporal of stationary target localization with time-invariant sensor

dimension when the field evolves over time. In our study, we characteristics. In this paper, we assume that all sensors are

focus on on the field sensing/detecting problem. acoustic sensors measuring only the amplitude of the received
sound signal so that the state parameter x is the unknown

A. Notation and Assumptions target position. Note that under our assumption, there is no

We use the following notation in our formulation of the longer a time dependence for x and A i. Assuming that acoustic

sensing/detecting problem in a sensor network: signals propagate isotropically, the parameters are related to

"• Superscript t denotes time. We consider discrete times t the measurements by

that are nonnegative integers. ai
"* Subscript i E [1, ..., K] denotes the sensor index; K is lix- (iIl (3)

the total number of sensors in the network.
"• Subscript j E [1,..., N] denotes the target index; N is the where ai is a given random variable representing the am-

total number of targets being observed. plitude of the signal at the target, a is a known attenuation

"* The target state at time t is denoted as x1. For a multi- coefficient, and 11l1 is the Euclidean norm. The term wi is a

target sensing/detecting problem, this is a concatenation zero mean Gaussian random variable with variance a'.

of individual target states xýj. CAco
"* The measurement of sensor i at time t is denoted as zi.The measurement history up to time t is denoted There are two common types of sensors for detecting and" - {z(°), z(i), ... , zC') }. The measurements may orig- tracking: acoustic amplitude sensors and direction-of-arrivalinate from a single sensor or a set of sensors. (DOA) sensors. In this section, we detail the characteristics ofinat frm a inge snsoror se of ensrs.the acoustic amplitude sensors.
"* The collection of all sensor measurements at time t are

denoted as z(t) -f (t) (t) (t) An acoustic amplitude sensor node measures sound ampli-
S z1 2 K tude at the microphone and estimates the distance to the target

In this paper, we consider a single sound source as the based on the physics of sound attenuation. Generally, range
target (N = 1) and the target state xt is the location of the sensors estimate distance based on received signal strength or
target in a two-dimensinal plane. Each sensor measures the time difference of arrival (TDOA).
received signal strength reflected from the target. We make the Assuming that the sound source is a point source and sound
assumption that the sensor characteristics are time-invariant propagation is lossless and isotropic, a root-mean-squared
and the target locates in a fixed position. (RMS) amplitude measurement z is related to the sound source

B. Sensing Model position x as

The time-dependent measurement zPt) of sensor i with a= (4)

characteristics A't) is related to the target state x0t) through ix - ¢11
the following observation model, where a is the RMS amplitude of the sound source, ( is the

p) location of the sensor, and w is RMS measurement noise [7].
=h (x(t),P)) (1) This is a special case of (3). w is Gaussian with zero mean

and variance o .
where h is a function depending on x(t) and parameterized

by Aft), which represents our knowledge about sensor i. III. DOUBLE SLIDE WINDOW EVENT DETECTION
In our study, we consider the sensing model for a single The ability of a sensor receiver to detect a weak echo signal
target with x representing the location of the target. Typical is limited by the noise that occupies the same part of the
characteristics Alt) about sensor i include sensing modality frequency spectrum as the signal. Detection of an acoustic
(e.g. what kind of sensor i is), sensor position (i and other signal is based on establishing a threshold at the output of the
parameters, such as the noise model of sensor i. Normally, the receiver. If the receiver output exceeds the threshold, a target



is said to be present. This is called threshold detection. Fig. 1 I
represents the output of an acoustic receiver as a function of
time. The fluctuating appearance of the output is due to the
random nature of receiver noise.

A threshold level in Fig. 1 is shown by the long dashed WindoSWindow:i Window:

line. If the signal is large enough, as at A and B, a target B A

is reported to be present, but C is a missed detection at the
given threshold. The signal at C would have been detected Time

if the threshold were lower. But too low threshold increases
the likelihood that noise alone will exceed the threshold and
causes false alarm.

Threshold level

Threshold level //-. w

RMS value
a of noise Window Window:

B A

0. Time

W Fig. 2. Illustration of double sliding window event detection, A and B are
two continuous sampling windows with same length and B arrives after A.

Time

Fig. 1. Envelope of the radar receiver output as a function of time. A, B The calculation of the window A and window B value is
and C represent signal plus noise. A and B would be valid detections, but shown as
C is a missed detection

In [8], the received signal strength Y from acoustic sensors M-1

in a fixed period of time is integrated, when it exceeds a 1i 'Z.1

threshold, the authors claim a detection of event occurred as: 1=0
M-1M-1 b IZn+M-112. (8)

3 IE Zn-1I (5) 1=
1=0

Then the decision variable R8 is
S Ž Sthreshold (6) Sb

where z denotes the measurement of received signal strength R,= --- (9)
at each sampling point. M is the length of observing/sampling S(

window. The advantage of this approach is the decision variable R,
However, this simple method suffers from a significant does not depend on the sensed signal energy, but on the ratio

drawback; namely, the value of the threshold depends on the of the energy of two consecutive windows.
sensed signal energy. When there is no event occuring in the
sensing range, the sensed signal consists of only noise. The IV. FUNDAMENTAL PERFORMANCE ANALYSIS
level of the noise power is generally unknown and can change A. Fixed Threshold Event Detection
when the environment changes or if unwanted interferers go In a wireless sensor network consisting of acoustic sensors,
on and off. Therefore, it is quite difficult to set a fixed the received signal at the sensor nodes can be described by
threshold. We design a double sliding window algorithm for Gaussian robabili densi function d
event-detection so as to alleviate the threshold value selectionproblem. If there is no event (only noise exists) in the observed

The double sliding window event-detection algorithm cal- sampling window, the received noise at the sensor follows
Gaussian distribution with mean value of zero and varianceculates two consecutive sliding windows of the sensed signal V0

energy. The basic principle is to form the decision variable as
the ratio of the total energy contained inside the two windows. 1 R 2
Fig. 2 shows two consecutive windows A and B (note that p(R) - _ _o

window B arrives after window A) and the response of the

ratio R, to a sensed event. It can be seen that when only The probability of false alarm which is the probability that
noise is sensed the response is nearly flat, since both windows the envelop of the noise will exceed the fixed threshold VD
contain ideally the same amount of noise energy. can be determined using Q-function.



e Detecting an event - Window A represents background

e ( -R 2 Vnoise and window B represents the occurring events as
Pfa = 1 R Q D Q (11) shown in Fig. 3.

JVD V2  
o ý00 Vo 0 * False alarm - Window A and B both represent backgroud

where Q-function is defined as: noise but the decision variable R, exceeds the threshold
as shown in Fig. 4.

1 po X2 1[ 1 We then analyze the foundamental performance - the prob-
Q(z) = ] exp(--j-)dx =• 1 - erf(2)2 (12) ability of detection and the probability of false alarm in the

DSW detection scheme.

If there is an event occurring, the pdf of the sensed signal to
the sensor is Gaussian pdf with mean value of m and variance i

0.Window B - Event Window A- Noise

1 (R - m)2  (13) Fig. 3. Case of Detecting an Event (window B arrives after window A)p(R) - expL 2F 1

The probability of detection Pd which is the probability 1) Probability of Detection: In Fig. 3, observation of win-
that the envelope R will exceed the threshold VD can also be dow A is Gaussian noise with zero mean and variance Vto and
determined using Q-function. window B represents event pdf which is also Gaussian but

with mean value of m and variance o0.
0 r (R-m) 2 ] Let X =Sb, Y = S, and Z = R, = Sb/Sa (referring to

Pd = 2 00 exp 2")o ] dR = Q Section III). We get the pdf of decision variable Z = X/Y
JID (14) in the following.

(14) Since random variable X and Y are identically independent,
We are interested to know the optimal value of threshold wehv

VD . To get VD, we use maximum a posterior (MAP) detection. we have

The decision boundary is 00

fz(z) = YfJ= u (x = yz)fy(y)dy (18)
f(RIH 2 ) _p(Hi) =

f(RIHi) p(H 2) (15) Using the pdf of observing window A and B, we get,

where H1 denotes the case of no events while H 2 denotes [ 1______ [ 21
the case with events. f(RIHI) and f(RIH 2) therefore repre- fz(z) = exp - (]) (19)
sent the pdfs of the two cases respectively. In one observation, =o (Z) [ 21a 1 1
the probability of no events equals to p(Hi) and the probabil- The pdf of decision variable Z = R, can be get by
ity of events equals to p(H2 ). simplifying (19),

Let/3 = p(Hj)/p(H2 ), applying (10) and (13) we get,

Mr (R-2) 21  1 2r 20o
exp (R I -/ 1 exp(---R-) (16) j0

ep 2-o = exp(- o0 (16) The probability of detection in DSW detection scheme, i.e.,
the probability that the envelop of the decision variable Z =

Optimal threshold VD is the solution of (16) and VD can R, will exceed the given threshold SD is given as below.
be written as:

[00 00 2Y y2l+z 2)-2rmzy+M 2 1
V =0°1n/3+- (17) Pd dzj exp dy (21), 2

B. Double Sliding Window Event Detection

In double sliding window (DSW) detection, decision is Window B - Noise F Window A - Noise
made over two consecutive sampling windows. According to
the example in Section III, an event or false alarm is reported Fig. 4. Case of False Alarm (window B arrives after window A)
when the decision variable R, exceeds a given threshold SD
(note SD is different from signal strength threshold VD in 2) Probability of False Alarm: When window A and B
Section IV-A). both represent backgroud noise as shown in Fig. 4 but the

In the case of two consecutive windows A and B (note that decision variable R, exceeds the threshold SD, a false alarm
window B arrives after window A), detecting an event and is reported. In this case, the pdf of decision variable Z = R,
false alarm occur respectively in the following two conditions: is derived similarly starting from (18).



V. CONCLUSIONS

00z y)( 1 Measures of performance for wireless sensor network ap-
fz(z) =exp exp(- Y' )dy (42cations are defined in various ways in which, detection

o 2•00 ep - 2 0o V0 20o probability and false alarm probability, classification errors and

It follows that: track quality have been widely used.
In this paper, we studied the performance of event detection

in wireless sensor network. We introduced a new detection
1zy)exp/' 1+ Z2 2\ algorithm - double sliding window (DSW) event detection

fZ(Z) == y exp ?P-• y dy where detection decision is made over two consecutive sam-0. 2 / pling windows. We analyzed the fundamental performace -
1 exp +- Z dy 2  (23) the probability of detection and the probability of false alarm

47rbo Z,=o e , 200 / over this new detection scheme and compared it theoretically
against the fixed threshold algorithm. We believe that our

Replacing y2 with s, (23) becomes: DSW detection will practically approach or exceed the fixed
threshold detection. Simulations over Xbow wireless sensor

1 0 1 + 2 network professional developer's kit will be provided in the
fz(z) = 0 jexp= 240 s) ds (24) later version.
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Observe that in DSW event detection scheme, the probabil-
ity of false alarm does not depend on the noise variance but
only on the decision variable threshold SD.

Similarly, we use MAP detection to get optimal threshold

SD in DSW event detection.

Assume 83 = p(H1)/p(H 2 ) (same as in fixed threshold

detection), applying (20) and (25) we get:

Y exp (1 + z2)y2- 2mzy + m 2 ] 1 (29)
=0 2 ro 2

y dy2= 27r(1 + z2)

Solving (29) gives the optimal threshold SD in DSW event
detection.
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Abstract-In this paper, a novel asynchronous energy-efficient guished, accurate time synchronization method [7] is the common
MAC protocol, ASCEMAC, is proposed for wireless sensor premise to ensure saving energy and communicating successfully
networks. We combine both contention-based and schedule-based among nodes.
MAC protocols' energy saving strategies in our algorithm. In As we know, the quality of each sensor node's clock usually boils
ASCEMAC, by applying free-running method and fuzzy logic down to its frequency stability and frequency accuracy [7]. In general,
rescheduling scheme, time synchronization which is necessary as frequency stability and accuracy increase, so do their power
in existing energy-efficient MAC protocols is not required any requirements, size and cost, which are all troublesome for general
more. Moreover, we present a traffic intensity and network sensor nodes. Hence, clock drifts are unavoidable in most WSNs,
density-based model to determine essential algorithm parameters, which are introduced by unstable and inaccurate frequency standards.
such as power on/off duration, interval of schedule broadcast In this case, there must be some unsuccessful communications caused
and super-time-slot size and order. Simulation results show that by uncoincidently switching back-and-forth between power on/off
our algorithm ensures the average successful transmission rate, states (we call these mismatch operations), without a correct global
decreases the data packet average waiting time, and reduces the clock established by time synchronization for previously mentioned
average energy consumption. Therefore, network performance energy-efficient MAC protocols. In the algorithm description part,
is improved and network lifetime is extended by using our we will discuss further how clock drift results in unsuccessful
algorithm. communications.

I. INTRODUCTION Moreover, in all previously mentioned energy-efficient MAC pro-
tocols, how to determine the durations of power on/off phases are

For wireless sensor networks (WSNs), energy saving is becoming seldom discussed. But, these two durations are closely related to
more and more important, due to nodes' limited energy resource. system performances, such as energy efficiency and throughput. In
Some solutions for saving energy at MAC layer for WSNs are put WSNs, the traffic in general has a heterogeneous nature [6], i.e., the
forward. They can be classified into two main categories, according traffic arrival rate for different nodes or even for the same node at
to their channel access strategies: contention-based MAC protocols different time is fluctuating considerably during the network lifetime.
and schedule-based MAC protocols. In this paper, we present an asynchronous energy-efficient MAC

In schedule-based energy-efficient MAC protocols: a new standard protocol: ASCEMAC, which not only outperforms the existing
named IEEE 802.15.4 [5] has been developed. It concentrates on energy-efficient MAC protocols, but also removes the tight depen-
providing a physical-layer and MAC-layer standard with ultra-low dency on time synchronization. We combine both contention-based
complexity, cost, and power for low-data-rate wireless connectiv- and schedule-based MAC protocols' energy saving strategies in our
ity among cheap fixed devices; Traffic-Adaptive Medium Access algorithm. In ASCEMAC, by applying free-running method and
(TRAMA) [2] employs a traffic adaptive and distributed election fuzzy logic [10] rescheduling scheme to set up phase-switching
scheme to allocate the system time for different sensor nodes; in schedules and compensate clock drifts among nodes. Moreove, we
EMACS [12], only active nodes monitor new communication requests present a traffic intensity and network density-based model to de-
from passive nodes. Notice that, through appointing transmission termine the essential algorithm parameters, such as power on/off
time for different sensor nodes, these schedule-based MAC protocols duration, interval of schedule broadcast, super-time-slot length and
reduce the energy consumption on collision and idle. But, how order.
to allocate time-slots efficiently and fairly is one of the biggest The remainder of this paper is organized as follows: our AS-
challenges for them. CEMAC design is described in Section II; simulation results are given

In contention-based energy-efficient MAC protocols: S-MAC[3], in Section III; Section IV concludes this paper.
divides the system time into frames. During the sleeping part, a
node powers off its radio to save energy, and it performances II. ASCEMAC PROTOCOL DESCRIPTION AND DiSCUSSION
communications during the active part; T-MAC is proposed in [4]. We use Energy-Efficient Self-Organization (ESO) [9] algorithm to
This protocol enables each node to dynamically and locally adjust form clusters. Each cluster has only one cluster head. The radius of.
the communication duration based on each node's traffic. We can see a cluster is the communication range of the cluster head. Nodes in
that, these contention-based MAC protocols implement energy saving one cluster can talk to their neighbors directly. The wireless media
through adjusting all nodes' communications into a certain period of (or the common channel) access scheme within a cluster is specified
time. by our ASCEMAC.

In all previously mentioned energy-efficient MAC protocols, even ASCEMAC divides system time into four phases: TRFR-Phase,
though the mechanisms of managing power on/off period are distin- Schedule-Broadcast-Phase, On-Phase and Off-Phase. An on/off rota-



tion consists of two adjacent On-Phase and Off-Phase. It is a fixed- During TRFR-Phase, each node randomly chooses a time to send
schedule stage between two adjacent Schedule-Broadcast-Phases. TRFR message, and this random transmission process complies with
The fixed-schedule stage consists of several on/off rotations. Fig.1 an uniform distribution. The working process is almost similar to
presents the system time scheme structure. The function for each CSMA [1]. Notice that, transmission time's randomness and carrier
phase is: sense reduce the collision possibility and increase the successful

transmission possibility of TRFR message. In the simulation section
TRFR-Phase TRFR-Phase (Section III), the experiment on TRFR message will show that normal

Scttedule-Broadcast-Phase ,~chedule-BroadcastPhas nodes within a cluster have a very high probability to send TRFR
messages to their cluster head successfully.

j!j!aI Ohs h a I B. Power on/off Duration (T,,/Tf) Design

I On/Off Rotation 2 I

Fixed-Schedul Stage Designing Tf, we consider the following factors:
. During Off-Phase and other nodes' transmission time, a node

Fig. 1. System Time Scheme Structure stops communicating, but there are still data packets arriving
from sensing component;

" TRFR-Phase is preserved for normal nodes to send Traffic-Rate . For each node, the buffer space is limited. When buffer is used
& TRFaure-Rate ispres mervdsosnrales to the ndTraffic-R; up (or overflowed), the following incoming data packets must"& Failure-Rate (TRER) messages to their cluster head; be discarded;

* Schedule-Broadcast-Phase is preserved for cluster head to .o- * There is a lifetime for each data packet. So the traffic over the
cally broadcast phase-switching schedules within their control network is sensitive to waiting time.
range;

" Off-Phase is preserved for all nodes to power off their radios. Based on the traffic arrival rate, buffer space and traffic lifetime,
In this phase, there is no communication, but data storing and we design Off-Phase duration (Tf) to avoid buffer overflow and keep
sensing may happen; information up to date at most degree. If we know the maximum

"• On-Phase is preserved for all nodes to power on their radios to waiting time W,,,, the buffer size ki and the traffic arrival rate Ai
make communication. In this phase, the system time is further for node i, Tf can be calculated using
divided into super-time-slots, which are composed of several (" "I
normal time-slots. Each super-time-slot is continuously used by in mi (2Wm.. - T.,) min(y - Tn); (1)
one source-destination pair. One normal time-slot is a period I Ai

of time (Td) to complete one data transmission from source to In general WSNs, each node has similar capability. Therefore, we
destination, can let ki=K (i=1,2,...). Then (1) is changed to

In ASCEMAC, each node informs the cluster head its traffic K
intensity, failure transmission and buffer overflow through TRFR Tf = in (2Wm. - T,), min( -T,) (2)
message (see Section A). Based on that information, the cluster head I
determines the power on/off duration (see Section B), the interval It is obvious that the longer the Off-Phase is, the more the energy
of schedule broadcast (see Section C), as well as the length and the is saved. However, the average waiting time of data packets will
order of super-time-slot (see Section D). After receiving the schedule increase as the duration of Off-Phase increasing. So there is a trade-
broadcast message from the cluster head, each node sets up its own off between saving energy and reducing waiting time.
phase-switching schedule. Since then, each node starts to power on During On-Phase, nodes start to send/receive data packets. In this
its radio to make communication and to power off its radio to save phase, system time is divided into slots. Certain number of time slots
energy according to its phase-switching schedule. We will describe are continuously occupied by a source-destination pair. There is no
our ACEMAC in detail in the following sections. competition and carrier sense at On-Phase. Knowing average traffic

A. TRFR Message Design arrival rate Ai for node i, Off-Phase duration (Tf) and totally N nodes
TRFR message(see Figs2cisusentby nrmal nodeaalTRFa-ehaseTRFR message (see Fig.2) is sent by normal node at TRFR-Phase. i hscutr .cnb acltda

T,= TdTf Ei=1 Ai (3)
T-e I soue D ate . I Rae FeRate . IOerf-wi T, Rtd i (3

Combining (2) and (3), we obtain the final equations for Tf and
T.. There are two cases:

Fig. 2. TRFR Message Format 1) when 2W... < mini(K)

"* "Data Arrival Rate" is the number of data packets coming from Tf = 2Wmaai(1 - Tdo) (4)
node's sensing component per second;

"* "Failure 'Rate" is the rate of unsuccessfully transmitted data T, = 2Wm..Tdo (5)
packets, caused by mismatch operations, to total transmitted
data packets; 2) when 2Ww >_ mini(K)

"* "Overflowing Rate" is the rate of overflowing data packets,
caused by improper power off duration, to total data packets Tf = K -cauedbyimroerpoer ffduaton t ttaldaa acet T =m~in(•-)(1 - Tdab) (6)

coming from node's sensing component. - i
In our algorithm, we add an ACK message as the acknowledgment K

for successfully receiving. A transmission is defined as unsuccessful Tn = 0Td mmin(-) (7)
when the transmitter does not receive ACK after certain period of aAi
time. where q is the sum of N nodes' traffic arrive rate, defined as =

During each on/off rotation, each node independently estimates its i=1 i.
data traffic arrival rate, unsuccessful transmission rate and overflow- Notice that, in our On-Phase and Off-Phase durations designing,
ing rate. But those rates sent to its cluster head are the average values we try to extend the power off time to save more energy, and also
on all on/off rotations. adjust data packets' waiting time to an acceptable value.



C. Phase-Switching Schedule Establishment and Interval of Schedule 0 .. I h!. W-
Broadcast Design -". .. . ...... -

Free-running is a timing method which allows each node to run on
its own clock. ACEMAC use free-running method to save energy and
spectrum resources because free-running method does not maintain Fig. 5. Mismatch Operation Removed by Re-schedule
a global clock within a cluster. Furthermore, we design a schedule
broadcast message (see Fig. 3). Cluster head generates this message
and broadcasts within this cluster. The function for each field of mismatch operations have little effect on information transmission.

In that case, some nodes could be allowed to go out of coincidence,
Type SRC Off-Duration On-Duration and be rescheduled only if necessary.

C1 DEST_1 Defer-Duration_1 Slot-Duration There is an another function for schedule broadcast, besides
SRC Dr 1n removing mismatch and informing phase-switching schedules. That
SRC_2 DEST_2 Defer-Duration_2 Slot-Duration 2 is, the cluster head can acquire more suitable durations for power

on/off phase according to current traffic conditions. For WSNs, the

traffic is heterogeneous. With the vibration of traffic arrival rate,
SRC i [DEST._i [Defer-Durationi Slot-Duration_" previously chosen Tf and T,. may not optimum any more. For

example, when the traffic arrival rate increases, more data packets
arrive during Off-Phase and On-Phase, so the possibility for buffer

Fig. 3. Schedule Broadcast Packet Format overflowing will increase. In another case, when the traffic arrival rate
decreases, less data packets arrive during Off-Phase and On-Phase,

schedule broadcast message is: so some energy is wasted by idle at On-Phase.
"* "On-Duration" specifies when all nodes should switch to Off- We adopt an adaptive adjustment method to determine the interval

Phase; of schedule broadcast. This method can save energy through avoiding
"* "Off-Duration" field regulates how long all nodes should stay unnecessary schedule broadcasts and idle, as well as ensure an

at one On/Off rotation; acceptable data successful transmission rate.
"* "Slot-Duration-i" field regulates the length of ith super-time- We use

slot; Ti X= x Ti-1  (8)
"* "Defer-Duration-i" is designed to inform nodes after how long as the interval adjusting function, where Ti is the ith interval of

the ith super-time-slot starts for an On-Phase; schedule broadcast, ýi is the ith adjustment factor and is a positive
"* "SRC-i" and "DEST-i" fields regulate the source and destination numeral.

of ith super-time-slot. We design a rescheduling-FLS to determine the value of i, which
If clock drifts do not exist, coincident phase-switching schedule is reflects the influence degree of clock drifts and traffic intensity

supposed to be set up at each node, based on each node's own local changes on communications.
clock and this schedule broadcast message. These phase-switching In our rescheduling-FLS. there are three antecedents:
schedules ensure the match operations among nodes. . the ratio of nodes with overflowed buffer (Rof);

But, as we mentioned earlier, mismatch operations among nodes * the ratio of nodes with high failing transmission rate (Rhf);
are unavoidable because there are always some clock drifts caused . the ratio of nodes experiencing unsuccessful transmission (R,-).
by unstable and inaccurate frequency standards. The consequent is the adjustment factor for the interval of schedule

The following example illustrates how clock drift results in a The.cost is The adjustic var for thepint of s he
mismatch operation, and how our ASCEMAC removes this mismatch broadcast(). The dinguistoc vanrables used to represent RHi, Rh.
to ensure successful communication. There is a source-destination and Rs, are divided into three levels: Low, Moderate and High. •
pair, nodes A and B. If the frequency standard for A is faster than is divided into 5 levels, Highly Decrease, Decrease, Unchange,
that of B and super-time-slot-l is the time-slot of A and B, A will run Increase and Highly Increase. We show these MFs in Fig. 6 and
into super-time-slot-I preceding B for an unneglectable time (At 1) Fig. 7.
after a period of time. During At 1 , data transmissions cannot be done
successfully between them, because B's radio is still off. See Fig. 4.

Ud0 . 0.lt o~aI-I~I"
I I l I•.oiI I Il•

o 't

Fig. 4. Mismatch Operation Due to Clock Drift

Schedule broadcast is responsible for removing mismatch, in
addition to informing nodes about phase-switching schedules. From Fig. 6. Antecedent Membership Function
Fig. 5, we see that At, between nodes A and B is successfully
removed after receiving a new schedule broadcast message. We design our rescheduling-FLS using rules with one example

From the above discussion, we can see that ensuring nodes against shown below:
mismatch operations can avoid unsuccessful transmissions, which are Rt:IF the ratio of nodes (xi) with overflow buffer is High,
caused by clock drifts. the ratio of nodes (x2) with high failure rate is High and the

However, it is unnecessary to offer match operations at all time and ratio of nodes (x3) experiencing unsuccessful transmission
for all nodes. For instance, two nodes, which have little information is High, THEN the adjustment factor for the interval of
to exchange, do not need to switch phases coincidently, since their schedule broadcast (ý) should be Highly Decrease.



the mismatch operation. See Fig. 4, there is a At, time difference
between nodes A, the source, and B, the destination. A starts sending
at the beginning of its super-time-slot. k is the number of data

- H...... packets sent during this transmission period. Ts,mi is the least time
needed to detect the synchronization information of a data packet.
We consider two cases:

1) If T.,,i, < At1 < Td

a) When k=-l, no packet, sent during this slot, can be
received by node B, i.e., 0% successful transmission rate;

b) When k=3, two packets, sent during this slot, can be
0 ... 1... ... .. .. .. ... 1 received by node B, i.e., 67% successful transmission

Fig. 7. Consequent Membership Function rate;
c) When k=n, n-i packets, sent during this slot, can be

TABLE I received by node B, i.e., -% successful transmission

THE RULES FOR ADJUSTING THE INTERVAL OF SCHEDULE BROADCAST. rate.

ANTE1 IS THE RATIO OF NODES HAVING OVERFLOWED BUFFER. ANTE2 1s 2) If Td < At 1 < 2Td
THE RATIO OF NODES WITH HIGH FAILURE TRANSMISSION RATE. ANTE3 a) When k=l, no packet, sent during this slot, can be
IS THE RATIO OF NODES OWNING UNSUCCESSFUL TRANSMISSION. AND received by node B, i.e., 0% successful transmission rate;

CONSEQUENT IS THE ADJUSTMENT FACTOR FOR THE INTERVAL OF b) When k=3, one packet, sent during this slot, can be
SCHEDULE BROADCAST. received by node B, i.e., 33% successful transmission

rate;
c) When k=n, n-2 packets, sent during this slot, can be

SRule [ Antel I Ante2 I Ante3 [ Consequent ]received by node B, i.e., -n2o% successful transmission
1 Low Low Low HighlyIncrease rate.
2 Low Low Moderate Increase Notice that with the increasing of k, more transmissions are
3 Low Moderate Moderate Decrease3 Low Moderate Modee Decrease done successfully under the same mismatch condition. Therefore,
5 Moderate Low Moderate Increase continuously occupying the common channel for several time-slots by
6 Moderate Low High Unchange one source-destination pair is an effective way to tolerate mismatch
7 Moderate o Moderate Decrease between source and destination.
8 Moderate Moderate High HighlyDecrease In our algorithm, we adopt a non-buffer-and-burst method to
9 Low High High Decrease transmit data. That is, based on the number of data packets waiting

10 Moderate High High HighlyDecrease for transmission and unsuccessful transmission rate, we design an
11 High Low Moderate Increase allocation-FLS to correspondingly allocates a certain size of super-
12 High Low High Unchange time-slot to each node.

13 High Moderate Moderate Decrease There are two antecedents for our allocation-FLS:
14 High Moderate High Decrease . traffic arrival rate (Ra);
15 High High High HighlyDecrease . the transmission failure rate (R. 8 ).

The consequent is the priority of this node performing transmission
(Pt).

We also use antecedent MFs in Fig. 6 and consequent MFs in
We summarize all meaningful rules in Table I. Fig. 7.
For every input (Xl,X2,X3), the output is defuzzified [8] using We design our allocation-FLS using rules with one example shown

1 , ~below:
S(XlX2,X-) = E1IF= eA )(Xl)AFt (X2)lAF, (X3) (9) R1 :IF the traffic arrival rate (xi) is High and the•(Xl, 2, XS •-- 15 (9

E_-=1 FI (X!)pFt(X2)AF3a(X3) unsuccessful transmission rate (x2) is Low, THEN the
priority of this node performing transmission(y) should be

The height of the-five fuzzy sets depicted in Fig. 7 are •1=0.2, ý2=0.5, Very Low.
ý3=1.0, ý4=3.0, ý5=4.0. We summarize all rules in Table II.

The inputs of rescheduling-FLS are acquired from TRFR messages With the allocation-FLS, the cluster head utilizes the information
sent by all normal nodes. Before broadcasting schedules, cluster head acquired from TRFR messages to calculate a priority for each node.
estimates the influence degree of clock drifts and traffic intensity The node owning the highest priority is the first one to make
changes on communications using rescheduling-FLS. After obtaining communications during an On-Phase.
.i, the cluster head uses (8) to determine the value for the next interval In summary, we have described the whole process that how
of schedule broadcast. to determine, establish and maintain phase-switching schedules for

saving energy and communicating successfully among nodes.
D. Time-Slot Assignment III. SIMULATIONS AND PERFORMANCE EVALUATION

For classic TDMA systems, such as GSM system, the system time We run simulations using OPNET. Nodes are deployed randomly
is divided into slots, and each user occupies cyclically repeating time in an area of 1000m x 1000m. The radio range is 30 meters, symbol
slots. A typical TDMA system transmits data in a buffer-and-burst rate is 40ksps and data frame length is 1024 bits. For each node, the
method, thus the transmission for any user is non-continuous and a clock drift rate ranges from 1 to 100pis.
high quality time synchronization is needed. We use the same energy consumption model as in [11] for the

But, in ASCEMAC, there is no time synchronization and global radio hardware. To transmit an i-symbol message a distance d, the
clock in the system. In this case, the successful transmission possi- radio expends:
bility is supposed to be degraded if we still utilize that buffer-and-
burst method to schedule communications. The following example ET4 (1, d) = ETx-elec(I) + TT...amp(I,d) = 1 X Eelec + I x e f x d2

illustrates the relationship between the length of super-time-slot and (10)



TABLE II
THE RULES FOR SUPER-TIME-SLOT ALLOCATION. ANTECEDENT I IS the traffic arrival rate of 0.1, 0.2 and 0.5 pks/s. It shows that, the

TRAFFIC ARRIVAL RATE. ANTECEDENT 2 IS THE UNSUCCESSFUL vibration of successful transmission rate with the change of nodes
TRANSMISSION RATE. AND CONSEQUENT IS THE PRIORITY OF THIS NODE number is less than 97.099% - 96.087% = 1.012%. These two

PERFORMING TRANSMISSION. experiments show that our ASCEMAC is a network density and traffic
intensity adaptive method.

Rule Antecedentl Antecedent2 Consequent too ..........

1 Low Low Moderate ....... ...
2 Low Moderate High 80 L o ....V.y.gh... ' ' ........................ ............ ............ .............
3 Low High VeryHigh
4 Moderate Low Low A ..

5 Moderate Moderate Moderate . ..
6 Moderate High High
7 High Low VeryLow
8 High Moderate Low9 High High Moderate :

9O H ig h.... H i hM d r t ............ ............ ............ t . ....... ......... .

S ............................. ............. ...........

S ............ .......... ... .... C... ddftrie=00tmn/e

and to receive this message, the radio expends: Is o,0 n 
2  

s W M
Total number of nodes In a duster

ERn = 1 X Eelc (11)

The electronics energy, EeIe, as described in [11], depends on Fig. 9. Successful Transmission Rate

the factors such as coding, modulation, pulse-shaping and matched
filtering, and the amplifier energy, ef, x d2 depends on the distance
to the receiver and the acceptable bit error rate. In this paper, we
choose: Eei., = 5OnJ/syn, ef, = lOpJ/sym/m 2 . . .........

A. TRFR Message Successful Transmission Probability

Fixing the duration of TRFR-Phase at 5, 10, 15, 20, 25 and
30 seconds separately and increasing the number of nodes in a E

cluster from 5 to 30, we obtain a series of curves on successful ......... .. .....
transmission rate of data packets (see Fig. 8). Notice that, if TRFR-
Phase duration is longer than 10s, TRFR message for each node has
almost 99% probability to be sent successfully to the cluster head.
This result proves that, for our algorithm, the cluster head can acquire ..
the necessary information from normal nodes to determine system T :
schedules successfully. ,, .o.c o.1 ` 0.l 2 o, .s o0A V~s 0A• s.11 0.1

Traffic Arrval Rate (Pl~s)

Fig. 10. Successful Transmission Rate

f C. ASCEMAC vs. S-MAC and TRAMA
107 We compare our ASCEMAC against S-MAC and TRAMA. In

Fig. 11, we plot the average clock drift rate versus average energy
e . consumption. Notice that ASCEMAC can save about from 68.263%

to 189.232% energy per packet compared to TRAMA and S-MAC.
.5 . .. .. That means, when ASCEMAC is used instead of TRAMA, the

..... ....... S•. lifetime for a same WSN can be increased at least one time,

T. and for S-MAC the lifetime even can be increased at least three
T times. From this experiment, notice that the schedule-based MAC

63o ,• 30 protocols have better performance on energy saving than contention-
Number of Nodes in One Custer based MAC protocols. The reason is that some energy is consumed

through making competition for accessing the common channel for
Fig. 8. Successful Transmission Rate for TRFR Message contention-based MAC protocols.

In Fig. 12, we compare the average waiting time of data packets.
Observe that our ASCEMAC has about 56.178% shorter waiting time

B. ASCEMAC Adaptation than TRAMA, and about 8.648% shorter waiting time than S-MAC.
We investigate the influences of the network density and the traffic Moreover, in this experiment, we set Wma to l2seconds. We found

intensity on the system performance of our algorithm. In Fig. 9, we that the average waiting times for ASCEMAC are smaller than Wino7,
plot the number of nodes in a cluster versus successful transmission even at different clock drift rates. But for S-MAC and TRAMA, the
rate of data packets. We run the simulations under 4 different average average waiting times are longer than Wie when the clock drift
clock drift rate, i.e., 0.0, 0.001, 0.01 and O.lms/s. Observe that, for rate is bigger than 0.01ms/s. Hence, ASCEMAC is more sensitive to
each clock drift rate, the vibration of successful transmission rate the traffic lifetime requirement than S-MAC and TRAMA.
with the change of nodes number is less than 85.714% - 83.606% = In Fig. 13, we plot the average clock drift rate versus the successful
2.108%. In Fig. 10, we compare the successful transmission rate at transmission rate. It can be seen that our ASCEMAC outperforms the



* . . Saving energy at MAC layer through reducing the energy
OSOCi .... consumption on collision and idle, and trading off data waiting~.... ................ .... tim e ;

1 . Utilizing free-running scheme and schedule broadcast to set
up phase-switching schedules without establishing global clock
within a cluster;

* Exploiting a rescheduling method, instead of time synchro-
S.......................................................... . ................... nization, to handle m ism atch caused by clock drifts, as w ell

... as taking advantage of fuzzy logical theory, which has dis-
tinctive capabilities for coping with uncertainty, to act as ourS.....: ...................... ...................... ............... r s h d l n -F L S ;

______ ______rescheduling-FS

. ...... Designing a time-slot allocation system, allocation-FLS, based
o, 0 , on traffic intensity and unsuccessful transmission rate;

Avog.0o d., dol• ,(. I • Proposing a traffic intensity and network density-based model
to acquire optimal power on/off duration, interval of schedule

Fig. 11. Average Energy Consumption broadcast, super-time-slot length and order.
Simulation results show that our algorithm successfully acquire

4 ... . .................. .the optimum values of essential algorithm parameters to ensure the
average successful transmission rate, decrease the data packet average

2 ......... .............. ......... .- EM waiting time, and reduce the average energy consumption. Therefore,
. .network performance is improved and network lifetime is extended

by using our algorithm.
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Abstract- Query processing methods have been studied exten- are usually powered by limited batteries [2], and replacing
sively in the context of database systems. But they are not directly or recharging batteries, in many cases, may be impractical
applicable in sensor database systems due to the characteristics or uneconomical. A recent study [11] shows that, in data
of sensor networks: the decentralized nature of sensor networks, collection application, about 40% of energy consumption is
the limited computational power and energy scarcity of individual
sensor node, and imperfect information recorded. In this paper, due to communication and 58% is due to sensing. Therefore, in
we propose an energy-efficient query optimization algorithm devising the best overall execution plan, data queries designed
(QOA) for imperfect information in sensor database systems. for SDSs should be highly efficient and optimized in terms of
We employ an in-network query processing method, which tasks energy on communication and data sensing.
sensor networks through declarative queries. Given a query,
our QOA will generate an energy efficient query plan for in- Data aggregation [2] techniques have been investigated
network query processing. Moreover, our algorithm can explicitly recently as efficient approaches to achieve significant energy
exposes uncertainty and ambiguity of query results to database reservation in SDSs. The main idea of data aggregation is
users. As we know, it is troublesome or even impossible to that aggregation points combine data arriving from different
keep a large number of data in sensor database systems for sensor nodes, eliminate redundancy, and minimize the number
network resource constraints. In our algorithm, we formulate
the probability distribution functions (PDFs) of measurement of transmissions before forwarding data to the base station.
uncertainties according to the knowledge on observation coverage Some important existed works are shown in [7], [8], [9],
and devices utilized, instead of estimating them from prior data. etc.. But, in this paper, we exploring a new approach, disk
'The simulation results demonstrate that our algorithm can vastly covering method, to reduce the information redundance on
reduce resource usage and thus extend the lifetime of sensor communication and sensing for energy reservation.
database system. Another target of this paper is about how to reason query

I. INTRODUCTION uncertainty from imperfect information in SDSs. "Imperfect
information is ubiquitous-almost all the information that we

Recent developments in integrated circuit technology have have about the real world is not certain, complete and precise"
allowed the construction of low-cost small sensor nodes with [10]. These include examples such as measurement and record-
signal processing and wireless communication capabilities. ing errors, missing data, incompatible scaling, obsolescence,
Distributed wireless sensor networks (WSNs), which are ba- and data aggregation. Therefore, such imperfection is a fact
sically composed of sensor nodes through ad hoc networking, in database systems. Nowadays, more and more database
have increasing potential applications. WSNs have been ap- designers switch to study the whole problem, including certain
plied in military sensing, physical security, air traffic control, information and uncertain information, to more accurately
environment monitoring and structures monitoring[l], etc.. describe the real world through database systems.

From a data storage point of view, WSN can be regarded An extensive survey of the work done in the database and
as a distributed database, sensor database system (SDS). Each artificial intelligence communities on imperfect information
node in a WSN takes time-stamped measurements of physical is given in [12]. It points out that in order to build useful
phenomena such as heat, sound, light, pressure, or motion. information systems, it is necessary to learn how to represent
SDSs, compared to traditional database systems, store the and reason with imperfect information. Notice that uncertain
data within the network and allow queries to be injected information is typically handled by attaching a number, which
anywhere in the network. Data distribution along with data represents a subjective measure of the certainty of the uncer-
replication makes the entire system more robust to failures and tain element according to some observer. The way in which the
can provide increased bandwidth and throughput, as well as number is manipulated depends on the theory that underlies
greater data availability. But, this distributed nature makes the the number. There are possibilistic, probabilistic and fuzzy
query processing significantly harder for query optimization. approaches [13] [14] [15] [16] [17]. Most of them just consider

Moreover, WSNs are often developed to run unattended for how to represent uncertain information in the database system,
years. This calls for not only robust hardware and software, but and how to make relational calculus among relations. But, how
also lasting energy resources. However, current sensor nodes to reason uncertainty with imperfect information is seldom



studied. B. k-Partial Set Cover Problem
In this paper, we propose an energy-efficient query opti- Covering problems are widely studied in discrete optimiza-

mization algorithm (QOA) for imperfect information in SDSs. tion. Basically, these problems involve picking a least-cost
We employ an in-network query processing method, which collection of sets to cover elements. Classical problems in
tasks sensor networks through declarative queries. Given a this framework include general set cover problems and partial
query, our algorithm will generate an energy efficient query covering problems. k-partial set cover problem [23] as a partial
plan for in-network query processing. The optimized query covering problem is about how to choose a minimum number
plan can vastly reduce resource usage and thus extend the life- of sets to cover at least k elements, and which k elements
time of SDSs. Moreover, our algorithm can explicitly exposes should be chosen.
uncertainty and ambiguity of query results to database users, k-partial set cover problem can be formulated as an integer
As we know, it is troublesome or even impossible to keep a program as following.
large number of data in sensor database systems for network MINIMIZE:
resource constraints and environment uncertainties. In our
algorithm, we manage uncertainties using probability theory m
as in [6] and [5], but the probability distribution functions E c(Sj) .Xj (3)
(PDFs) of measurement uncertainty are formulated according j=1
to the knowledge on observation coverage and devices. SUBJECT TO:

The remainder of this paper is organized as follows: in
Section II, we provide some preliminaries on vector space
model and k-partial set cover problem; Section III presents Yi + Z xE 1 i= 1,2,..., n, (4)
our algorithm; simulation results are given in Section IV; j:tiESj
Section V concludes this paper. n

II. PRELIMINARIES Z <n-k (5)
i=1

A. Vector Space Model Xj 0 j =1,2,..., m, (6)

Vector Space Model (VSM) [18] [19] is a way to represent Yi > 0 j = 1, 2,..., n, (7)
documents through the words that they contain. It has been
widely used in the traditional information retrieval (IR) field WherexjE{0,1} correspondsto each SjES. 1ff set S3 belongs
[20] [21]. Most search engines also use similarity measuresbase onthismodl t ran We docmens. SM ceats ato the cover, then xj = 1. 1ff set t3 is not covered, then yi = 1.based on this m odel to rank W eb docum ents. V SM creates a t ~ .C e ry h r o l e a o t n -k s c n o e e
space in which both documents and queries are represented by tier. Clearly, there could be at most n - k such uncovered
vectors. For a fixed collection of documents, an m-dimensional elements.
vector is generated for each document and each query from III. OUR ALGORITHM DESCRIPTION
sets of terms with associated weights. Then, a vector similarity In a SDS, when a query is submitted, common rules
function, such as the inner product, can be used to compute for active sensor nodes selection is generated based on the
the similarity between a document and a query. query. And then, each sensor node determines whether itself

In VSM, weights associated with the terms are calculated will participate this query processing or not according to its
based on the following two numbers: location, remaining energy and measurement accuracy through

"* term frequency, fij, the number of occurrence of term yi query optimization algorithm. Finally, the chosen sensor nodes
in document xi; and collect data and send them back to the sink with uncertainty.

"* inverse document frequency, gi = log(N/dj), where N In our algorithm, active sensor node is defined as a sensor
is the total number of documents in the collection and di node which collects data and makes responds during a query
is the number of documents containing term Yi. processing.

The similarity simv8 (q, xi) between a query q and a document
xi can be defined as the inner product of the query vector Q A. Network Model

and the document vector Xj: In SDS, a large number of sensor nodes are deployed over
m~ an area. All nodes are interconnected to one or more gateways

simvs(q, xi) = Q. Xi = (1) by means of wireless links. Gateways are in charge of relaying
VE (V Ej'= I (wij) data to a base station.

where mi is the number of unique terms in the document For the reasons of deployment itself of SDSs, it is difficult
or even impossible to exactly pre-determine the locations ofcollection. Document weight wi~ and query weight vj are
sensor nodes. After all sensor nodes have been deployed,

wij = fijwij = fijlog(N/dj) and each node sends its location information to sinks through

Slog(N/dj) yj is a term in q certain messages, such as beacons. The topologies of the area
otherwise. (2) controlled by each gateway will be formed according to these

information. Then, all topology information will be gathered



at the base station. We assume that each sensor node in our In our query VSM, the query vector is designed as
algorithm is capable of acquiring its own location through (R,,Ad,Bm). Where
certain methods. e RI stands for location relativity. It is the indicator of the

distance between the location of a sensor node and the
B. Query VSM Design optimum location. If their positions are exactly match, in

With high network density and topology un- this case, R1=l.
predetermination characteristics, sensing range overlapping . Ad stands for measurement accuracy. It is the indicator
in SDSs among nodes are unavoidable and space variant of sensor nodes' measurement accuracy. Ad equals to

(the node density is not uniform over the network). It is the the probability distribution function (PDF) of each node'
main reason to create redundancy data. Communicating and measurement error. For example, the measurement accu-
storing these redundancy data is one of the biggest sources of racy of CXM539 is 100/IT (lmGauss). In this case, Ad=

wasting energy during query processing. But on the other side 0.002.
of coin, it is a method to increase the confidence of query * Bm stands for remaining battery. It is the indicator on
results. Therefore, there is a trade off between increasing the how much power remains for a sensor node. The unit of
confidence of query answer and saving energy. Bm is J.

We solve the high information redundancy through control- After a database user submits a query (shown in Fig. 1), the
ling the number of nodes to response queries. It is obviously base station selects the optimum locations of this query, and
that the less the number of nodes communicate and sense dur- then translates the query from SQL [4] form into a query VSM
ing a query, the less the energy is consumed. But the problem vector Q. -According to the query given in 1, Q=(1, 0.2, 5). We
is the query results supplied by partial nodes should reflect assume the maximum energy for nodes is 5J.
the whole area's condition at acceptable degree, otherwise it
is uselessness for database users. Therefore, the key issue is SELECT MIN(TEMP), MAX(TEMP),AVG(TEMP)

FROM nodes
to determine how many nodes and which nodes should be WHERE LOCATION=Iocation 1 AND PROB1<0.2 AND PROB2<0.2

selected for a query. SAMPLE PERIOD 100s;

Following factors are considered by us for this issue:

"* Sensor Location Fig. 1. SQL query

Since sensors' location directly determines which area
can be observed. Given a piece of area and some nodes After receiving Q, each node starts to updates its own query
over this area, in order to employ as few as possible nodes VSM vector (i.e., hi (i=1,2,..., n)), hj=(Rj,j, Ad,i, Bi,i). We
to cover as large as possible area, we should select those assume there are n nodes in this network totally. R1 ,j is defined
nodes which locate optimum locations. We discuss how to as:
determine optimum locations for a query in the following /(x. - xo,3) 2 + (y, - yo and
part (Optimum Location Determination Section). rl,i,j = K

"* Measurement Accuracy R1,j = {r,,i,1, rti,2, ,r,i,v} (8)
Since the cost and the measurement accuracy of sensor
nodes are related with each other, sensor nodes owning Where (xi, yi) is the location of node i. (xo, Yo) is position of
different accuracy levels are deployed simultaneously in an optimum location. K is the uniform factor, which ensure
a SDS for economical reason. Furthermore, through a the value of rl,ij is less than one. We assume that there are
query, database users supply not only what information V optimum locations for a query.
they want to retrieval, but also the requirement on uncer- We design a query correlation indicator -y to express the cor-
tainties of query results. In this case, we should select the relation degree between each node and a query. We formulate
nodes whose measurement accuracy are close to database -y in (9).
users' requirement.
"Battery Level YQ,h3 = max{q•h
The battery level of sensor nodes is our third factor of 1 X R1 ,i,j + (1 - Ad) X (1 - Ad,i) +Bm <x Bm
nodes selection. When the power of a node is used up, -,/(R,2 + (1 - Ad)2 + B2)(R2 + (1 - Ad) 2 + B1,
the data observed by this node will be missed, which will
reduce the confidence at some degree. This inspires us to The higher -y is, the more chance this sensor node take part
select the nodes with more remaining battery so that a in this query as active sensor nodes.
query processing can be completed by all chosen nodes.

In our algorithm, we employ VSM to combine all consid- C. Active Sensor Nodes Choosing

ering factors to select the most related nodes to participate The query correlation indicator -YQ,h, are exchanged be-
a query processing. Our goal is to use as little energy as tween neighbors (nodes, which are only one hope apart, are
possible and more suitable sensor nodes to supply satisfied neighbors and can communicate with each other directly). By
query results. employing cooperation among nodes, the nodes, which own



highest query correlation degree among their neighbors, are After the value of k and the locations of k disks are
picked up to participate this query. The pseudo-codes of active obtained, in our algorithm, we choose the centers of those
sensor nodes choosing algorithm is given in Fig. 2. k disks as our optimum locations. Since these k disks can

almost cover all sensor nodes in certain area, the sensor nodes,
l/initial the covering set locating on these locations, can almost monitor all information
C -- null;
I/initial the uncovering set, N is the closure of all neighbors of a node of the interested area.
UC('-- N;

//select the active nodes E. Uncertainty Acquisition
while UC is notnull

do There are numerous factors introducing uncertainty into theselect node i with the highest query correlation;
if node i is not covered yet query results, as we mentioned above. In most existed works,

C 4-- li};
UC -N/(i}; the uncertainties of query results are determined by PDFs

elsego to node j with the next highest query correlation; of measurement uncertainty, which are pre-estimated through
end history data. If a large number of history data are not available,

the performance of those existed algorithms will become worse
Fig. 2. Algorithm for active nodes choosing or even they cannot deal with this condition.

As we know, for general SDSs, the memory size of sensor
Notice that, running our QOA in each sensor node, the most node is too limited to keep large history information compared

related sensor nodes are chosen to answer the query, which are to many network terminal devices. For instance, the Berkeley
mostly close to the optimum locations, satisfy the uncertainty motes have at most 128KB program memory, 4KB RAM, and
requirement and own high battery level. But other nodes switch 512KB external nonvolatile storage [2].
into energy saving mode, i.e., sleep mode. Therefore, the SDS Inspired by this demand, we formulate the PDFs of mea-
composed by these optimized sensor nodes can highly improve surement uncertainties from other information instead of his-
the energy efficiency. tory data. Hereafter we analyze the main factors that introduce

the uncertainty into the query results in order to formulate
D. Optimum Location Determination them. These include:

We model the problem, determining optimum locations for a * Observation Coverage
query, as a k-partial set cover problem. We define this problem Observation coverage is the area covered by active sensor
as follows: Let n be the number of all sensor nodes, p be a nodes during a query processing. Since, the physically
given positive integer such that p < n. If we have k same disks observable world consists of a set of continuous phe-
with radius r, which depends on the sensing range of sensor nomena in space, it is impossible to gather all relevant
nodes, the k-partial set cover problem try to solve whether data through nodes whose observation coverages are not
k disks can cover at least p nodes. In this paper, we only continue. In this case, some uncertainties are introduced
consider sensor nodes in a plane (the dimension is 2). This into the query results by partial observation coverage. We
kind of k-partial set cover problem is a NP problem. define a observation coverage PDF (fc) to stand the total

At present, all known algorithm for NP problems require coverage of all active sensor nodes for a query.
time that is exponential in the problem size. It is unknown * Measurement Accuracy
whether there are any faster algorithms. Therefore, to solve The quality of sensor node's sensing parts usually boils
an NP problem for any nontrivial problem size, one of the down to its measurement stability and measurement ac-
approaches is approximation algorithm, which can acquire the curacy. In general, as measurement stability and accu-
solution during polynomial time. SETCOVER algorithm [23] racy increase, so do their power requirements and cost,
is a good approximation method to determine the value of k which are all troublesome for general sensor nodes. For
and the locations of these k disks on the plane we interested, general application, different cost of sensor nodes are

SETCOVER "guesses" the set with the highest cost in the deployed. Hence, some uncertainties are introduced into
optimal solution by considering each set in turn to be the the query results by measurement errors. For example,
highest cost set. For each set that is chosen, to be the highest speed detect sensor node, CXM539, is a built-in magneto-
cost set, say Sj , Sj along with all the elements it contains resistive sensor. The measurement accuracy is 100 /T
is removed from the instance and is included as part of the (±lmGauss) [22]. We define a measurement accuracy
cover for this guess of the highest cost set. The cost of all PDF (fm.) to stand the measurement error produced by
sets having a higher cost than c(Sj) is raised to oo. Ij = related sensor nodes.
(Tj ,Sj, c', kj ) is the modified instance. SETCOVER then We employ formula (10) to calculate the corresponding
calls PRIMALDUAL on Ij which uses a primal dual approach uncertainty for a query result.
[24] to return a set cover for Ij. In PRIMALDUAL, the dual
variables ui are increased for all tjETj until there exists a P = / fm(x)dx x (y)dy (10)
set Sa, so that Za:tiESo ui = c'(Sa). Sets are chosen this '4'
way until the cover is feasible. The algorithm then chooses We present a classification of probabilistic queries and
the minimum cost solution among the m solutions found. examples of common representative uncertainty for each class.



There are different definitions for fm for each class, of sampling. Therefore, QOA extends the lifetime of network
1) simple aggregation class about 2.5 times.

In this class, an value of an sensor node is returned only,
such as MIN and MAX query. In this case, fm=fm,j.
Node j is the node which detects the highest/lowest
value during this query.

2) complicate aggregation class
In this class, a derivative value over a group of sensor
nodes' data is returned, such as AVG query. fro, now,
has the same distribution as frnj. But the mean and
variance are -L.jjLij and -•Ljoj separately. We
assume there are M active nodes for this query. And
for each node, fm,j complies with same distribution with 10

different mean (pj) and variance (aj). But, if M is big ,
enough, fm complies with a normal distribution [25]. QueryIndex

For example, a database user retrievals the highest, lowest
and average temperatures of location 1 and location 2. The Fig. 3. Nodes Dead Time
query results is given in Table I. Relation database model [3] is
employed. TEMPERATURE relation (see I), is specially used In Fig. 4, we compare the observation covering rate of these
to record the temperature information of interested areas. The two schemes. Observed that, QOA outperforms the original
values of PROB 1, PROB2 and PROB3 are calculated using query processing method for about employing less 65 - 45 =

(10). 20 nodes to cover 90% area interested.

TABLE I .

EXAMPLE OF UNCERTAIN RELATION: TEMPERATURE. PROBI IS THE 04

UNCERTAINTY WITH THE LOWEST TEMPERATURE. PROB2 IS THE

UNCERTAINTY WITH THE HIGHEST TEMPERATURE. PROB3 IS THE ..

UNCERTAINTY WITH AVERAGE TEMPERATURE.

LOCATION MIN PROBI MAX PROB2 MEAN PROB3 j00.3 ,

location 1 30 7.5% 50 5.56% 44.5 10%
location 2 40 4.22% 55 0.02 0 48.9 15.89%

0 00 20 0 40 00 W0 0 0 so 100
Nodes Explored

IV. SIMULATIONS AND PERFORMANCE EVALUATION

One hundred sensor nodes are deployed randomly in an Fig. 4. Observation Coverage Rate

area of 10 x 10m 2 , and sensing range is lm. The initial
energy of sensor nodes uniformly distributes within [0,5]J. In Fig. 5, we plot the nodes selection rate for QOA.
We run Monte Carlo simulations 1000 times to remove the Observed that, at most about 40% nodes are chosen for a
randomicity of simulation results. We compare our QOA query and at least about 15% nodes are active nodes to respond
against original query processing method without any query a query. This simulation result illustrate the reason why our
optimization. QOA can implement energy reservation. That is, about half

The energy consumption model for data sensing is shown nodes switch to energy saving model during query processing.
in (11).

E,, = Eei * St (11) By employing our QOA, the energy is saved and the lifetime
of network is extended. But the cost for using our algorithm
is the decrease of observation covering rate. In Fig. 6, we plot

Where Ese is the energy consumed by one query processing. the observation covering rate decreasing degree. It is shown
Eeie, is the energy consumed by once data sampling. St is the that, the biggest observation covering rate decrease is 16.6%.
duration of one query processing, which is defined by database But, most of time, the decreasing degree is less than 8%.
users' query. In this paper, we choose: EeIe = 5mra/sample,

In Fig. 3, we plotted the sampling index versus the nodes V. CONCLUSIONS
dead time. We can see that after processing about 20 times In this paper, we propose a energy-efficient query optimiza-
of sampling, all nodes, without QOA, use up their energy. tion algorithm for imperfect information in sensor database
But for QOA, the whole network is not down until 53 times systems. We tasks sensor networks through declarative queries.
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Abstract - In this paper, we are concerned with developing System to combine all these factors together to achieve a better
a fuzzy deployment for wireless sensor networks. Traditional deployment.
deployments often assume a homogeneous environment, which The rest of this paper is organized as follows. Section II
ignores the effect of terrain profile and obstacles such as build- introduces the preliminaries that our research is based on. A
ings, trees and so on. Nevertheless, in many applications, some Fuzzy Deployment scheme is proposed in Section III and sim-
areas need to be more critically monitored. All these factors ulations are given in Section IV. Section V concludes this pa-
are combined together through Fuzzy Logic System in our pro- per.
posed scheme. Simulation results show that the Fuzzy Deploy-
ment improves the worst-case coverage by around 5 dB.

II. PRELIMINARIES

Keywords - Deployment, fuzzy logic, propagation modeling.

A. Overview of Fuzzy Logic Systems

I. INTRODUCTION Figure 1 shows the structure of a fuzzy logic system
(FLS) [7]. When an input is applied to a FLS, the inference en-
gine computes the output set corresponding to each rule. The

In this paper, we are concerned with developing a fuzzy defuzzifer then computes a crisp output from these rule output
deployment for wireless sensor networks (WSN). Traditional sets. Consider a p-input 1-output FLS, using singleton fuzzifi-
deployments often assume a homogeneous environment [1], cation, center-of-sets defuzzification [8] and "IF-THEN" rules
which ignores the effect of terrain profile and obstacles such of the form [9]
as buildings, trees and so on. Such approaches have proved in- R1 : IF x, is Fl and x2 is F1 and ... and xP is F1, THEN y is
accurate in the practice of cellular networks. In fact, many G1.

propagation models, based on theoretical calculation and/or
empirical data, have been proposed to predict path loss over Assuming singleton fuzzification, when an input x'
irregular terrain. For instance, the Longley-Rice model [2,3], {x ,...., x} is applied, the degree of firing corresponding to
also known as the ITS irregular terrain model, was proposed the lth rule is computed as
to predict large-scale median transmission loss relative to free
space loss over irregular terrain. The Longley-Rice method /IF (x1) */IF (X2 ) *... -iZ,(xp) llLF• (Xi) (1)
operates in two modes, namely, point-to-point and area modes. where * and T both indicate the chosen t-norm. There are
Taking a similar approach, Durkin et al. [4,5] proposed a com- many kinds of defuzzifiers. In this paper, we focus, for illustra-
puter simulator to predict field strength contours over irregular tive purposes, on the center-of-sets defuzzifier [8]. It computes
terrain, which was adopted by U.K. JRC for the estimation of a crisp output for the FLS by first computing the centroid, cGl,
effective mobile radio coverage areas. As a standard for sys- of every consequent set Gt, and, then computing a weighted
tem planning in Japan, Okumura's model [6] is widely used for average of these centroids. The weight corresponding to the
signal prediction in urban areas. None of these works have not lth rule consequent centroid is the degree of firing associated
been taken into consideration in current WSN research, with the lth rule, 7IZ__1Fý (x9), so that

Nevertheless, in many applications, some areas need to be
more critically monitored. For example, if there is a road (I=l cGzTiPFl(X) (2)
through the area of interest, and chances are that targets would Yeas (x') = M
follow this road, then it would be advisable to deploy more
sensors around this road. In this paper, we utilize Fuzzy Logic where M is the number of rules in the FLS.



rooftop signal and diffraction, respectively. When expressed in
RUE i• -dB, the overall path loss is given by

INPUT OUPU o.Lp=Lo+Lex (4)
x X y--(c)• Y

where Lo is the free space path loss and L, is the excess path
FU7Z INPUT-L ----...... o.TS loss due to terrain profile. In this paper, we only consider area-

SETS_ _ETS mode path loss, in which the whole area of interest is divided
in to smaller subareas and each subarea has a different value of

Fig. 1. The structure of a fuzzy logic system. Lx. Although this is a simple model, it satisfies our require-
ment of accuracy. More accurate model could be used at the

B. Coverage cost of complexity.

Grid-based approaches are often used to compute the cov-
erage provided by the sensor networks [10, 11]. However, for III. FUZZY DEPLOYMENT
resolution and complexity considerations, Voronoi-based ap-
proaches are required in some situations. Thanks to its prop-
erty that the Voronoi vertexes partitions the plane into a set of A. Problem Formulation
convex polygons such that all point inside a polygon are closest
to only one site, it has been widely used to determine the best- In this work, a simple theoretical propagation is used. How-
and worst-case coverages [12]. For illustrative purposes, only ever, the fuzzy deployment is also applicable to any other prop-
worst-case coverages are considered in this paper. Considering agation model. First, we assume the area of interest is di-
the targets as sources of signals, the received signal strength vided into square subareas, each of which has its own terrain
can be found by subtracting overall path loss from the radiated profile and required level of surveillance, which can be trans-
power plus antenna gains, expressed in dB. Thus, assuming the lated into area path loss PL(i) and required threshold of path
propagation is bidirectionally symmetric, the coverage can be loss PLTH (i). Second, it is possible to control the number
represented by the overall path loss observed at the vertexes of of sensor nodes sprayed in each subarea. Third, such spray
Voronoi polygons. is uniformly random in each subarea. Then the problem is to
C. Propagation Model determine the number of sensor nodes needed in the ith sub-

area, n(i). Any deployment that assumes a homogeneous en-
In previous work [ 13], general long-distance path loss mod- vironment would have to deploy the same amount of sensors

els are often used, which assume the average large-scale path into each subarea, which can not meets the requirements most
loss is expressed as a function of distance by using a path loss likely. From common sense, we know that it would advisable
exponent, n [14]. to deploy more sensors to those areas with larger area path loss

and higher level of surveillance, though such relationship is
d not easy to determine. However, fuzzy logic systems have

PL(d) = PL(do)() 0  (3) demonstrated their power in utilizing such subjective knowl-
edge. Therefore, we apply fuzzy logic to this problem to deter-

where n is the path loss exponent, which indicates the rate at mine the best number of sensors for each subarea.
which the path loss increases with distance, do is the close-
in reference distance, which is determined from measurement B. Scheme description
close to the transmitter, and d is the distance from the source to
the receiving point. However, the propagation often takes place For the ith subarea, its area path loss PL(i) and required
over irregular terrain, and the effect of terrain profile in many threshold of path loss PLTH(i) are normalized to [0, 101 by
cases is not negligible. Based on a systematic interpretation convention. Either antecedent, PL(i) or PLTH(i), has three
of measurement data obtained in different areas, a number of overlapping membership functions covering the whole input
propagation models are developed to predict signal strength. space as shown in Fig.2. The overlaps between the member-
For example, work by Walfisch and Bertoni [15] considers the ship functions are to guarantee that more rules are fired for a
impact of rooftops and building height by using diffraction to specific input so that the decision is distributed to more rules
predict average signal strength at street level. Since the rows or and thus robustness is improved. Such a choice of membership
blocks of buildings are viewed as diffracting cylinders lying on functions provides M = 32 = 9 rules.
the earth in the development of this model, it is also applicable The rules are designed such as:
to obstacles such as trees, shrubs and so on. In this model, the
pass loss, S, is a product of three factors, namely, Po, Q2 and R' : IF PL(i) is low and PLTH(i) is high,
P1 , which is due to free space path loss, the reduction in the THEN weight(i) is ziA.



where mA and aYA are the mean and standard deviation, respec-
tively. If we replace the triangle and trapezoidal membership

Low Med High functions in Fig.2 by the Gaussian membership functions in
Fig.4, the number of free parameters is 45 as listed in Table 2.

L M H 0.9

0.0

Fig. 2. Membership functions for T(PL) and T(PLTH)
{Low, Medium, High}. 0.7

0.6

where 0t is an integer in [1,9]. In our design, a different iv is 0.5

used for each of the M rules. The whole rule base is shown in .4

Fig.3. The numbers in the figure are the values of ziF 's asso- 0.3

ciated with the respective rules. For example, the upper-right 0.2

cell with the number "9" means: 0.

R 9 : IF PL(i) is high and PLTH(i) is high, 0 . . . . . . . .. 10

THEN weight(i) is 9 Fig. 4. Gaussian Membership functions for T(PL) and T(PLTH) =

{Low, Medium, High}.

--------------------.. Table 2. Number of free parameters for Gaussian membership functions in
SIthe Fuzzy Deployment.z 3 :6 :I9:_ _ _ _ _ _ _ _

Number of antecedent parameters 36
tt I .. Number of consequent parameters 9

X 2 5 8 g Total 45
I I

I I

1 1 4 7 Finally, for the ith subarea, the FLS computes an output
I weight(i) according to (2). Then n(i) is determined by (6).

L M H PL

n (i) = , weight(i) (6)
Fig. 3. Rule base for the Fuzzy Deployment. n weight(i)

Although fuzzy logic systems are universal approximators,
the desired dynamic can only be captured by enough free pa-
rameters. Dividing the input space into more overlapping IV. SIMULATIONS
zones can give us finer resolution at the cost of higher com-
plexity, thus, the number of design parameters is a measure-ment of both resolution and complexity. Our design has 30 We conducted computer simulations to compare the Fuzzy
free parameters as shown in Table 1. Deployment with traditional uniform deployment. Specifi-cally, we consider a scenario in which irregular terrain profile

Table 1. Number of free parameters in the Fuzzy Deployment. causes variation in the propagation. A 1km x 1km area is di-
vided into 100 square subareas with the size of 100m x 100m,

Number of antecedent parameters 21 and each subarea has its own specific terrain profile. Given
Number of consequent parameters 91000 sensors to deploy in this area, a traditional deployment

Total 30 would spray 10 nodes into each subarea, while the Fuzzy De-
ployment would adaptively determine the number needed for

However, for comparative purposes, the number of free pa- each subarea.
rameters is often counted when all the membership functions We ran traditional and fuzzy deployment on 200 randomly
are chosen to be unnormalized Gaussian functions, i.e., generated maps and took the average. The random maps

were generated as follows. For the ith 100m x 100m sub-
1 (x - mA) 2  area, there is an area path loss PL(i) and a path loss threshold

'AIV ( -= p 2- J' (i), which represent the area terrain profile and required
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Abstract--Previous research shows that restraining cluster output sets. Consider a p-input 1-output FLS, using singleton
size helps energy efficiency in sensor networks. However, it is fuzzification, center-of-sets defuzzification [9] and "IF-THEN"
often ignored that the distance estimation in sensor networks rules of the form [10]
is inaccurate enough for fine-grained clustering decision. In
this paper, we are concerned with developing a fuzzy cluster R1 : IF Xi is F11 and x2 is F1 and ... and xp is F1, THEN y
size to handle the distance error and non-linearity. A fuzzy is G1.
logic system is developed to make clustering decision based on
the received signal strength. Simulation results show that the Assuming singleton fuzzification, when an input x' =
proposed Fuzzy Cluster Size scheme can keep the performance
near the optimal range when distance estimation is distorted by {x.,.. x'} is applied, the degree of firing corresponding to

log-normal shadowing. the lth rule is computed asPI()*P' ('2) PP X Z1M X (1)
I. INTRODUCTION 1F(xl) lFt(x 2) '* IIFI(xP) 2 P . (

Recent technological advances have made it possible to where * and T both indicate the chosen t-norm. There are

develop distributed sensor networks consisting of a large many kinds of defuzzifiers. In this paper, we focus, for illustra-

number of low-cost, low-power, and multi-functional sensor tive purposes, on the center-of-sets defuzzifier [9]. It computes

nodes that communicate in short distances through wireless a crisp output for the FLS by first computing the centroid, cGs,
links [1]. Example applications of sensor networks include of every consequent set G1, and, then computing a weighted
target tracking, scientific exploration, and data acquisition in average of these centroids. The weight corresponding to the

hazardous environments. lth rule consequent centroid is the degree of firing associated

Wireless sensors provide a clear advantage in cost, size, with the /th rule, Pi1lFL(X'), So that
flexibility and distributed intelligence over their wired coun- EM 1() CZ•I TcZ__lF1 (X9(
terparts. However, the energy constraint remains a major x/ _______(2)

concern for wireless sensor networks [2]-[4]. Clustering has 1=1 TZi=t•F, (Xý)
been proposed and heavily studied for improvement in energy where M is the number of rules in the FLS.
efficiency [5], [6]. [7] shows that clustering should done with
cluster size constraint, however, this cluster size constraint FUZZY LOGIC SYSTEM

come in form of fixed cluster radius, which could be insuffi- - -
cient to model the complexity of clustering in sensor networks.
Furthermore, the distance estimation in sensor networks is INPUT UTPU,

inaccurate enough for fine-grained clustering decision. In this F,.__ E e D oU____
paper, we are concerned with developing a fuzzy cluster size
to handle the distance error and non-linearity in the clustering. FUZZY INPUT ------ OTS

The rest of this paper is organized as follows. Section II SETS_---------_--_J _SEIM

introduces the preliminaries that our research is based on. The
problem with fixed cluster size is discussed in Section III. Fig. . The structure of a fuzzy logic system.
A Fuzzy Logic System is developed to make the clustering
decision in Section IV and simulations are given in Section B. Ranging Techniques
V. Section VI concludes this paper. Distance is often estimated based on received signal

II. PRELIMINARIES strength, time of arrival(TOA), time difference of ar-
rival(TDOA) or angle of arrival [11]. The angle-of-arrival

A. Overview of Fuzzy Logic Systems based ranging requires directive antennas or arrays, which is

Figure 1 shows the structure of a fuzzy logic system not suitable for most microsensors. Similarly, measuring time
(FLS) [8]. When an input is applied to a FLS, the inference of flight requires timing device with satisfactory resolution like
engine computes the output set corresponding to each rule. in GPS. Although TDOA needs much less resolution, it often
The defuzzifer then computes a crisp output from these rule requires extra acoustic or ultrasound emission, which comes



with higher price, larger size and more energy consumption, all Considering the phenomenon of interest as a random pro-
seeming impractical for microsensors. Thus, most technically cess, the correlation between data collected by two sensors
available ranging is based on received signal strength; in fact, is generally a decreasing function of the distance r between
RSSI(Received Signal Strength Indication) is widely used in them. After the data aggregation removes most of the redun-
wireless communications to provide distance estimation. The dancy, the residue can be assumed an increasing function of
underlying observation is that the average large-scale path loss r. Based on the above observation, the data aggregation effect
can be expressed as a function of distance by using a path loss is modeled as below.
exponent, n [12]. Suppose there are Mk non-head members in cluster k (k =

d 1,2,3,..., c), the ith member (i = 1, 2,3,..., Mk) collects 1
PL(d) = PL(do)(Wj-)n (3) bits and sends them back to its head k at distance rki, the

0 head expends 2 1EDA Joules on the data aggregation of the
where n is the path loss exponent, which indicates the rate at 21 bits (1 bits collected by itself and another 1 bits by its ith
which the path loss increases with distance, do is the close- member), where EDA is set as 5nJ/bit as in [5] and listed
in reference distance, which is determined from measurement in Table I. The resulting data is assumed of 1(1 + r77) bits,
close to the transmitter, and d is the distance from the source where r7k is data aggregation residue ratio and assumed to be
to the receiving point. Measurements have also shown that at complementary exponential, specifically,
any value of d, the path loss PL(d) at a particular location is
random and distributed log-nomally (normal in dB) about the 't ki = 1 - e-rki, 0 < a < 1, (7)

mean distance-dependent value, where a is a small positive real number whose magnitude

PL(d)[dB] = P5L(d)[dB] + X,, (4) depends on specific phenomenon of interest. For example,
the light, acoustic, seismic and thermal signals often show

where X, is a zero-mean Gaussian distributed random variable a strong correlation at short distance, and thus, a will have
(in dB) with standard deviation a (also in dB). The log-normal smaller values for such data. Since 77 is a monotonically
shadowing is the main source of distance error for received- decreasing function of a and r, r approaches zero for smaller
signal-strength-based ranging methods. The values of n and a and r. This model can approach the perfect-data-correlation
a are often estimated empirically, for example, n could vary assumption in [5] by decreasing a or approach the no-data-
from 2 to 10 for different environments, and typical value of aggregation assumption in [15], [16] by increasing a, thus,
a in urban area is around 10 dBs. different scenarios can easily be set up by varying a.

C. Radio Energy Consumption III. FIXED CLUSTER SIZE

The following model is adopted from [5] where perfect Expellant Self-Organization (ESO) was proposed to replace
power control is assumed. To transmit l bits over distance the problematic random election in LEACH. ESO used an
d, the sender's radio expends individual clustering criterion (8) to distribute the clustering

,lEeec + ld 2  d d decision to each sensor node. That is
ETx (1, d) -- d (5) C CH

lEetec + l dmpd4  d > doJCM(i) JCH(i), (8)
CMand the receiver's radio expends where JCM (i) (and JCH (i)) is the energy cost if the ith

ERx (1, d) = lEtec. (6) node chooses to be a cluster member (and cluster head),
respectively. If we substitute the data correlation and energy

Elc is the unit energy consumed by the electronics to process consumption model into this criterion, we obtain
one bit of message, ef, and crop are the amplifier factor
for free-space and multi-path models, respectively, and do is Eciec + Cf srk + Eelec + EDA + 1(rik)(Eelec + cmpdk) (9)
the reference distance to determine which model to use. The CH
values of these communication energy parameters are set as Z M + Eejec + cmpdl.

in Table I. The non-linearity in (9) makes it difficult to evaluate in real

D. Data Correlation Model application. Thus, an easier evaluation is needed. Note that r

The data collected by neighboring sensors have a lot of is the dominating factor in this comparison, (9) reduces to

redundancy, thus, [5] assumes perfect data correlation that CH
all individual signals from members of the same cluster can ffMrik + 7(rik)(Eelec + empdk > cmpd i - Eejec.

be combined into a single representative signal. Nevertheless, Suppose there exists a solution for r, which is denoted by
this assumption cannot hold when the cluster size increases Rppose ther eno
to some extent. Therefore, we develop a complementary Rc(d, dch). Then,
exponential data correlation model based on the observations CH
in distributed data compression [13], [14]. r C RM(d,deh) (10)

CM



R,(d, deh) can be determined analytically or empirically. In training to prevent overfitting, which can be observed when
[7], R,(d, deh) is simplified into a constant Re in order to checking error begins to increase while the training error is
fit in the limited computational capacity of sensors. FLS is still decreasing. The antecedent parameters mA's and UA's are
especially useful here because it can do non-linear mapping tuned using back-propagation while the consequent parameters
using only linear computations. (w)"s are determined with Least-Square method [17].

The above derivation indicates that the clustering decision The training and checking data are collected by evaluating
is mainly based on the distance, and the distance is often (9) at difference step size. The desired support is defined as
estimated with error. In this paper, we consider the ranging the difference between JCM and JCH so that the support is
error with received signal strength because it is most widely positive when JCM > JCH. The initial membership functions
used. The log-normal shadowing could distort the clustering are equally space on the input space, for example, the initial
decision dramatically if it is not taken care of. In the next membership functions for the first input, RSSI-r, are depicted
session, we design a Fuzzy Logic System to address this in Fig.3. The consequent weight wl are randomized. And the
problem. output surface of the trained FLS is plotted in Fig.4.

IV. FUZZY CLUSTER SIZE

Since the self-organization details are described in [7], we I
concentrate on the clustering decision making. Consider a
node, [i], which is making it clustering decision, i.e., to be °8
a cluster member or a cluster head. Its RSSI meter can give it
a RSSI reading from the base station, RSSI-d, and from the M8 0.6

neighboring cluster head [k], RSSI-r. The cluster head [k]
also has it RSSI reading from the base station, RSSI_d-ch, 0.4

which is available to node [i] through local broadcast. Based on 4.
these three parameters, the FLS gives out a resulting "support"
from this node to the neighboring cluster head, which indicate
the degree to which this node should join the neighboring 0
cluster head as a cluster member. If the support is above the I
threshold zero, then this node should join the neighboring -140 -120 -00I -0 -60 -40

cluster head; otherwise, it should claim itself as a cluster head. RssLr
The whole process is depicted in Fig.2.

Fig. 3. Example: initial membership functions for RSSI.r.
RSSI_r

RSSI_-d FIS Support CH/CM
RSSl d ch

Fig. 2. System diagram.

The rules are designed such as:

R1 IF RSSI-r is Low and RSSI-d is High and 0 0
RSSI-d-ch is Medium 'I ....

THEN support is it 1. -2

where zfv is a real number. 0w Y .. .. ...- ,

Three Gaussian membership functions are used for each .140 100 ..802 -0

antecedent, and a constant 211 is assigned to each rule. The -20 Rsr
Gaussian membership function is given by RSSId

IA(X) = 1 (X -- mA) 2
I•()=exp{- 2 aA j (1 1) Fig. 4. Output surface of the trained FLS. RSSL~d~ch fixed at 70.

2 2A

where mA and O"A are the mean and standard deviation, The support is used in two ways. Firstly, when a node is
respectively. Note that there are two free parameters for each to make clustering decision, that is, to be a cluster head or
Gaussian membership function and there are M = 33 = 27 cluster member, it should count the support from its potential
rules, there are 2 x 3 x 3 = 18 antecedent parameters and 27 supporters, i.e., those nodes who would support this node with
consequent parameters, for a total of 45 parameters. These positive support if this node choose to be a cluster head.
parameters need to be tuned using a set of training data. The sum of its support and its energy level are the basis
Another set of data, called checking data, is often used in of this node's clustering decision. Secondly, after some node

3
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subfigures are very close to each other, which clearly show that
fuzzy cluster size could always keep the performance near the
optimal size. When confronted with distance error, this feature

can guarantee robust results.

VI. CONCLUSION

In this paper, we propose using fuzzy cluster size to address

the non-linearity and distance uncertainty in clustering. Thanks

to Fuzzy Logic System's power in handling non-linearity and

uncertainty, the Fuzzy Cluster Size scheme keeps the clus-
tering performance near the optimal range when the distance

estimation is distorted by log-normal shadowing.
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Abstract-In this paper, we introduce a new method for control protocol based on the lower layer information.
cross-layer design in mobile ad hoc networks. We use fuzzy Some works related to energy efficiency have been
logic system (FLS) to coordinate physical layer, data-link reported. Banbos proposes a power-controlled multiple
layer and application layer for cross-layer design. Ground access schemes in [5]. This protocol reveals the trade-
speed, average delay and packets successful transmission off of the transmitter power cost and backlog/delay cost
ratio are selected as antecedents for the FLS. The output
of FLS provides adjusting factors for the AMC (Adaptive in power control schemes. Zhu [6] proposes a minimum
Modulation and Coding), transmission power, retransmis- energy routing scheme, which consider the energy con-
sion times and rate control decision. Simulation results sumption for data packets as well as control packets of
show that our cross-layer design can reduce the average routing and multiple access. In [7], Sichitiu proposes
delay, increase the throughput and extend the network a cross-layer scheduling method. Through combining
lifetime. The network performance parameters could also network layer and MAC layer, a deterministic, schedule-
keep stable after the cross-layer optimization. based energy conservation scheme is proposed. This

scheme drives its power efficiency from eliminating idle
listening and collisions.

The demand for energy efficiency and Quality of However, cross-layer design can produce unintended
Service (QoS) in mobile ad hoe networks is growing interactions among protocols, such as an adaptation
in a rapid speed. To enhance the energy efficiency and loops. It is hard to characterize the interaction at different
QoS, we consider the combination of physical layer, layers and joint optimization across layers may lead to
data-link layer and application layer together, a cross- complex algorithm.
layer approach. A strict layered design is not flexible Our algorithm is quite different from all the previous
enough to cope with the dynamics of the mobile ad works. We propose to use the Fuzzy Logic System (FLS)
hoc networks [1]. Cross-layer design could introduce in the cross-layer design. We define a coherent time, a
the layer interdependencies to optimized overall network certain period of time. During this coherent time, the
performance. The general methodology of cross-layer AMC (Adaptive Modulation and Coding), transmission
design is to maintain the layered architecture, capture power, retransmission times and rate control decision
the important information that influence other layers, are used for packet transmission. After this time, we
exchange the information between layers and implement adaptively adjust these parameters by FLS again basing
adaptive protocols and algorithms at each layer to opti- on current ground speed, average delay and the pack-
mize the performance. ets successful transmission ratio. By applying the FLS

Lots of previous works have focused on cross-layer mechanism to the cross-layer, a better QOS provision
design for QoS provision. Liu [2] combine the AMC at and energy efficiency are achieved.
physical layer and ARQ at the data link layer. Ahn [3] The remainder of this paper is structured as following.
use the info from MAC layer to do rate control at net- In section II, we introduce the preliminaries. In sec-
work layer for supporting real-time and best effort traffic. tion III, we make a overview of fuzzy logic systems.
Akan [4] propose a new adaptive transport layer suite In section IV, we apply the FLS into the cross-layer
including adaptive transport protocol and adaptive rate design. Simulation results and discussions are presented



in section V. In section VI, we conclude the paper. There is a relationship between the probability of de-

II. PRELIMINARIES livery p and retransmission times n:
1

A. IEEE 802.11a OFDM PHY n = 1.451n (I)
i-p

The physical layer is the interface between the wire-

less medium and the MAC [8]. The principle of OFDM The IEEE 802.11 standard requires that the transmit-

is to divide a high-speed binary signal to be transmitted ter's MAC discard a data frame after certain number

over a number of low data-rate subcarriers. A key of unsuccessful transmission attempts. According to the

feature of the IEEE 802.11 a PHY is to provide 8 PHY requirement of probability of delivery, we choose the

modes with different modulation schemes and coding minimum number of retransmission. The advantage is

rates, making the idea of link adaptation feasible and we can save energy through avoiding unnecessary re-

important, as listed in Table I. BPSK, QPSK, 16-QAM transmission, and ensure probability of delivery.

and 64-QAM are the supported modulation schemes. C. Application Layer
The OFDM provides a data transmission rates from 6 Traffic in application layer is divides into two classes:
to 54MBPS. The higher code rates of 2/3 and 3/4 are real-time and best-effort. Each node in the mobile ad
obtained by puncturing the original rate 1/2 code. hoc networks independently regulates best effort traffic.

TABLE I It is proposed to control the rate of the best-effort traffic

EIGHT PHY MODES OF THE IEEE802.1 1A PHY to avoid excessive delays of the real-time traffic by
using local per-hop delays as a feedback to local rate

Mode Modulation CodeRate DataRate Bps controller [3]. The general behavior of a congestion-
1 BPSK 1/2 6Mbps 3 controlled system is illustrated in Fig.1. The control2 BPSK 3/4 9Mbps 4.5

3 QPSK 1/2 12Mbps 6 algorithm ensures that the system operates around, or
4 QPSK 3/4 18Mbps 9 preferably close to the "cliff", which ensure maximum
5 16 - QAM 1/2 24Mbps 12 system throughput, but at the cost of large average
6 16 - QAM 3/4 36Mbps 18 packets delay. The control algorithm discussed, one the
7 64 - QAM 2/3 48Mbps 24
8 64 - QAM 3/4 54Mbps 27 other hand, keep the system at the delay "knee" where

the system throughput is almost the same as the at the
cliff, but the buffers are significantly less loaded, so

B. IEEE 802.11 MAC the delay is close the minimum. Due to loss typically
happens at the cliff, while delays start to increase at the

withe 802.11n MACvusesdCarrier-Sense Mlti achves a knee, we use the per-hop MAC delay as a feedback for
with Collision Avoidance (CSMAICA) to achieve au-loacntlisedofhepktls.

tomatic medium sharing between compatible stations.

In CSMA/CA, a station senses the wireless medium to
determine if it is idle before it starts transmission. If throughpit delay

the medium appears to be idle, the transmission may deay : congestion
proceed, else the station will wait until the end of 'knee* control lclitr

the in-progress transmission. A station will ensure that
the medium has been idle for the specified inter-frame
interval before attempting to transmit.

Besides carrier sense and RTS/CTS mechanism, an
acknowledgment (ACK) frame will be sent by the re- load

ceiver upon successful reception of a data frame. Only
after receiving an ACK frame correctly, the transmitter Fig. 1. General Behavior of a Congestion-controlled System

assumes successful delivery of the corresponding data
frame. The sequence for a data transmission is: RTS- When MAC layer acquires access to the channel, the
CTS-DATA-ACK. nodes will exchange the RTS-CTS-DATA-ACK packets.

A mobile node will retransmit the data packet when After the transmitters receive an ACK packet, a packet is
finding failing transmission. Retransmission of a signal transmitted successfully. The packet delay represents the
packet can achieve a certain probability of delivery, time it took to send the packet between the transmitter



and the next-hop receiver, including the deferred time In order to make the system "stable", the rate at which
and the time to fully acknowledge the packet. In this node transfers packets intended for its destination must
paper, we assume that there will be always best-effort satisfy all nodes that the queuing lengths will not be
traffic present that can be locally and rapidly rate con- infinite and the average delays will be bounded.
trolled in an independent manner at each node to yield
necessary low delays and stable throughputs. F Node Mobility and Channel Fading

D. Energy Mobility of a mobile node generates a doppler shift,
which is a key parameter of fading channel. The doppler

A mobile node consumes significant energy when it shift is
transmits or receives a packet. But we will not consider fd = V-fl (5)
the energy consumed when the mobile node is idle. C

The distance between two nodes are variable in the where v is the ground speed of a mobile node, c is the
mobile ad hoc networks and the power loss model is speed of light (3 x 108 m/s), and f, is the carrier. In our
used. To send the packet, the sender consumes [9], simulation, we used the carrier is 6GHz. For reference,

if a node moves with speed lOin/s, the doppler shift is
Ptz = Peiec + Cfs" d2  (2) 200Hz.

and to receive the packet, the receiver consumes, We model channel fading in ad hoc networks as Rician
fading. Rician fading occurs when there is a strong

Prz = Pelec (3) specular (direct path or line of sight component) signal
in addition to the scatter (multipath) components. For

where Pltc represents the power that is necessary example, in communication between two infraed sensors,
for digital processing, modulation, and efs represents there exist a direct path. The channel gain,
the power dissipated in the amplifier for the free space
distance d transmission. g(t) = gi (t) + jgQ (t) (6)

A joint characteristic of most application scenarios
of mobile ad hoc networks is that mobile nodes only can be treated as a wide-sense stationary complex Gaus-

have a limited energy supply which might not even be sian random process, and 9g(t) and gQ(t) are Gaus-

rechargeable, hence they have to be energy-efficient as sian random processes with non-zero means mi(t) and

possible. Transmitter power control allows interfering toQ(t), respectively; and they have same variance o-ý,

communication links sharing the same channel to achieve then the magnitude of the received complex envelop has

their required QoS levels, minimizing the needed power, a Rician distribution,
mitigating the channel interference, and maximizing the x 2 +S 2 xs

network user/link capacity. p•(x) = T2 p -2 xJ1o(-•) x > 0 (7)

E. Delay whereE.Dly hr = 2 (t) + M2 (t) (8)
The packet transmission delay between the mobile 8 = (

nodes includes three parts: the wireless channel transmis- and Io(.) is the zero order modified Bessel function.
sion delay, the Physical/MAC layer transmission delay, This kind of channel is known as Rician fading channel.
and the queuing delay [10]. A Rician channel is characterized by two parameters,

Defining D as the distance between two nodes and Rician factor K which is the ratio of the direct path
C as the light speed, the wireless channel transmission power to that of the multipath, i.e., K = s 2/2r.2, and
delay as: the Doppler spread (or single-sided fading bandwidth)

Delayh = (4) fd. We simulate the Rician fading using a direct path
added by a Rayleigh fading generator. The Rayleigh fade

The Physical/MAC layer transmission delay will be generator is based on Jakes' model [11] in which an
decided by interaction of the transmitter and the receive ensemble of sinusoidal waveforms are added together
channel, the node density and the node traffic intensity to simulate the coherent sum of scattered rays with
etc. Doppler spread fd arriving from different directions

The queuing delay is decided by the mobile node 1/0 to the receiver. The amplitude of the Rayleigh fade
system-processing rate, the subqueue length in the node. generator is controlled by the Rician factor K.



BPSK, QPSK, 16-QAM and 64-QAM are the sup-
ported modulation schemes for IEEE 802.11a OFDM
physical layer. We can show their performance curves
with Rician fading in Fig. 2.

Fig. 4. The structure of a fuzzy logic system

When an input is applied to a FLS, the inference
"engine computes the output set corresponding to each

10- rule. The defuzzifer then computes a crisp output from
these rule output sets [13]. Consider a p-input 1-output

10• FLS, using singleton fuzzification, center-of-sets defuzzi-

fication [14] and "IF-THEN" rules of the form [15]10*. . .. .... . ,
-0 -0 0 5 10 15 20 25 W0 35 40o.... NRdbo, o ... R1 :IFxlisF andx 2 isF and... andxpisF,

THEN y is G1.
Fig. 2. Modulation Curves with Rician Fading Assuming singleton fuzzification, when an input x' -

{fx, ... , x'} is applied, the degree of firing correspond-
After we introduce the channel coding and node ing to the lth rule is computed as

mobility into the modulation schemes, the mudualtion
curves will change a lot. For the same SNR, channel UFV (x4) * IFI (X2) *'* F@(X') = Tip-/Fý (XZ) (9)
coding will improve the BER performance and the where * and T both indicate the chosen t-norm. There
mobility will degrade the BER performance. are many kinds of defuzzifiers. In this paper, we focus,

for illustrative purposes, on the center-of-sets defuzzifier.
It computes a crisp output for the FLS by first computing

The mobile nodes are roaming independently with the centroid, cG,, of every consequent set G1, and, then
variable ground speed. The mobility model is called one- computing a weighted average of these centroids. The
step Markov path model [12]. The probability of moving weight corresponding to the lth rule consequent centroid
in the same direction as the previous move is higher is the degree of firing associated with the lth rule,
than other directions in this model, which means this Ti=I1 gFý(XD), so that
model has memory. Fig.3 shows the probability of the M
six directions. ycos(X') E1=1 CGI T...ll- (XD) (10)

.I . where M is the number of rules in the FLS.

IV. Fuzzy APPLICATION FOR CROSS-LAYER DESIGN

AMC, transmission power, retransmission times and
rate control decision will manage the energy consump-
tion and QoS provision. How to choose a proper ad-
justing factor for these parameters will determine the
wireless ad hoe networks performance.

Fig. 3. One-step Markov Path Model We collect the knowledge for adjusting factor selection
based on the following three antecedents:

Ill. OVERVIEW OF Fuzzy LOGIC SYSTEMS 1) Antecedent 1. Ground speed.
2) Antecedent 2. Average delay.

Figure 4 shows the structure of a fuzzy logic system 3) Antecedent 2. Packets successful transmission ra-
(FLS). tio.



The linguistic variables used to represent the Ground
speed, average delay and packets successful transmission I hl

ratio were divided into three levels: low, moderate, and
high. The consequents - the adjusting factor for the 05

AMC, transmission power, retransmission times and rate
control decision were divided into 9 levels, decrease one, 0 2 4 6

decrease two, decrease three, decrease four, unchanged,
increase one, increase two, increase three and increase Fig. 6. MFs for antecedents

four. Fig.5 show the FLS application for the cross-layer
design. 1.5

N es D.-...ea . ... D .-r...e.ram Inreasein-rease Increase 1,cre s

1.0 Thee e Ucheg One z tee Peu

Rea Time Bet-Efofct
Service Service -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

Shae, ---

f ac Tcr ot Fig. 7. MFs for conseqents

MAC -- -I
Packet Delay I

1 • -"L using

yPx1 0 2 x1 AM =_ IIFi(XI)I.LF2 (X2).F 3 (X3) CG (1

t- - -~• - - - -YXX2 3 21

Trr-mi.-i." Po-- e Z E7 1= PF (Xl)PF (X2)11F1 (X3)

We apply (11) to compute the adjusting factors and
Fig. 5. Cross-layer Design Algorithm adjust the network parameters dynamically. Comparing

to the constant parameters, the fuzzy optimization for
We designed questions such as: cross-layer design can meet QoS and energy require-

ment.
IF ground speed is low, average delay is low and

packets successful transmission ratio is high, THEN V. SIMULATIONS

the adjusting factor is We implemented the simulation model using the OP-

So we need to set up 33 = 27 (because every NET modeler. The simulation region is 300 x 300 meters.

antecedent has 3 fuzzy sub-sets, and there are 3 an- There were 12 mobile nodes in the simulation model,

tecedents) rules for this FLS. We summarized these rules and the nodes were roaming independently with variable

in Table II. ground speed between 0 to 10 meters per second. The
We used trapezoidal membership functions (MFs) to mobility model was called one-step Markov path model.We ued rapzoial embrshi fuctins M~s to The movement would change the distance between mo-

represent low, high, increase four and decrease four; and
bile nodes.

triangle MFs to represent moderate, unchange, increase 1) Avera
one increase two, increase three, decrease one, decrease 1) Average Delay: Because data communications in
two and decrease three. We show these MFs in Fig.6 the mobile networks had trimming constraints, it was
and Fig.7. important to design the network algorithm to meet a kind

and Fiur a o tof end-end deadline [16]. We used the average delay to
In our approach to form a rule base, we chose a single evaluate the network performance.

consequent for each rule. We design a fuzzy logic system

using rules such as: daverage _ J' di (12)

R1 IF ground speed (xi) is Fl,average delay (x 2) is k
F2, and packets successful Each packet was labeled a timestamp when the source

F n2  akt scesu transmission ratio (X3 ) is
F3, THEN the adjusting factor (y) is c1. mobile node generated it. When its destination mobile

node received it, the time interval was the transmission
For every input (xi, x2, x3 ), the output is computed delay.



Fig.8 showed the delay performance of the constant As Fig.9 showed, after fuzzy optimization, the dura-
parameters and the one after cross-layer optimization tion of the first node "dead" is 1.67 times longer than
for the real time traffic, the best effort traffic and all that of the constant parameters, which is 1589 seconds.
the traffic. Cross-layer optimization made a tradeoff for
the average delay between the real time traffic and the
best effort traffic. For the real time traffic, the cross-layer
optimization would enlarge about 0.6 seconds. However
for the best effort case, the cross-layer optimization could
reduce the delay by up to 90.53%. For the all traffic,
the cross-layer optimization could reduce the delay by
up to 71.85%, which meant the cross-layer optimization
could improve the average delay performance for the
whole system. As showed in the best effort case, the
cross-layer optimization could make the average delay
"stable", which was important for the communication
system design. Fig. 9. Node Alive

3) Networks Efficiency: The mobile ad hoc networks
S.' - were used to collect data and transfer packets. The

throughput of packets transmitted was one of the pa-
rameters to evaluate the networks efficiency. In our
simulation, we assumed the collecting data distribution
of the mobile node was Poisson distribution and the
arriving interval was 0.2 second. Observing from Fig. 10,
the cross-layer optimization made a tradeoff between
the real time traffic and the best effort traffic. For the
real time traffic, after the cross-layer optimization, the
throughput of the network was about 0.02% smaller

.8. Average Delay than that of the constant parameters. However, for the
best effort traffic, the throughput of the network was up

to 71.99% larger. For the all the traffic case, after the
2) Energy Efficiency: It was not convenient to cross-layer optimization, the throughput of the network

recharge the battery, so the energy efficiency was ex- wsu o3.2 agr hc en h rs-aewas up to 32.52% larger, which meant the cross-layer
tremely important for mobile ad hoc networks. The optimization could improve the throughput performance
network should keep an enough number of "live" mobile for the whole system. As the performance of the aver-
nodes to collect data, that meant the network need to age delay, the cross-layer optimization could achieve a
keep the energy among the mobile nodes in balance. "stable" throughput performance.
We used the number of remaining alive nodes as the We introduced the fuzzy logic system in the cross-
parameter of the energy efficiency. layer design. Comparing with other algorithms for cross-

In (2) and (3), we assumed PeI, was equal to layer design, the fuzzy method could be flexible and
6.0 x 10-4 and Cf, was equal to 6.0 x 10-4. We assumed simpler to implement and the performance outputs were
that the energy of each mobile node was 0.07 J. also impressive.

When the remaining energy of a mobile node was
lower than a certain threshold, the node was considered VI. CONCLUSION
as "dead". In this simulation, we chose 1.2x 10-3 as Cross-layer design is a effective method to improve
the threshold. A sensor was "dead" meant it could the performance of the mobile ad hoc network. We apply
not transmit/receive packets any longer, so it would be the fuzzy logic system to combine physical layer, data-
ignored by network. The number of nodes of mobile ad link layer and application layer together. We selected
hoc networks which was below a certain threshold meant ground speed, average delay and packets transmission
this network does not work. successful ratio as antecedents. The output of FLS
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TABLE II

THE FUZZY RULES FOR CROSS-LAYER DESIGN

Antecedent 1 is its ground speed, Antecedent 2 is its average delay and Antecedent 3 is its packets successful transmission ratio.
Consequent 1 is adjusting factor for retransmission times, Consequent 2 is adjusting factor for AMC, Consequent 3 is adjusting factor for

transmission power and Consequent 4 is adjusting factor for rate control decision.

Rule # Antecedent 1 Antecedent 2 Antecedent 3 Consequent I Consequent 2 Consequent 3 Consequent 4
1 low low low increase two decrease two unchange unchanged
2 low low moderate unchanged unchanged decrease two decrease two
3 low low high decrease two increase two decrease four decrease four
4 low moderate low increase one decrease one increase one increase one
5 low moderate moderate decrease one increase one decrease one decrease one
6 low moderate high decrease three increase three decrease three decrease three
7 low high low unchanged unchanged increase two increase two
8 low high moderate decrease two increase two unchanged unchanged
9 low high high decrease four increase four decrease two decrease two
10 moderate low low increase three decrease three increase one increase one
11 moderate low moderate increase one decrease one decrease one decrease one
12 moderate low high decrease one increase one decrease three decrease three
13 moderate moderate low increase two decrease two increase two increase two
14 moderate moderate moderate unchanged unchanged unchanged unchanged
15 moderate moderate high decrease two increase two decrease two decrease two
16 moderate high low increase one decrease one increase three increase three
17 moderate high moderate decrease one increase one increase one increase one
18 moderate high high decrease three increase three decrease one decrease one
19 high low low increase two decrease four increase two increase two
20 high low moderate increase two decrease two unchanged unchanged
21 high low high unchanged unchanged decrease two decrease two
22 high moderate low increase three decrease three increase three increase three
23 high moderate moderate increase one decrease one increase one increase one
24 high moderate high decrease one increase one decrease one decrease one
25 high high low increase two decrease two increase four increase four
26 high high moderate unchanged unchanged increase two increase two
27 high high high decrease two increase two unchanged unchanged


